
Prepared by
Thomas A. Holm, PE, FACI, Director of Engineering

John P. Ries, PE, FACI, President
Expanded Shale, Clay and Slate Institute

April 2007
Preface and Table of Contents
Preface

Although the terms lightweight aggregate and lightweight concrete are twentieth century expressions, the concept of lowering the self-weight of structures by incorporating cellular aggregates is more than 2,000 years old. This Reference Manual is intended to be an in-depth reference book for use by designers, users and Expanded Shale, Clay & Slate (ESCS) manufacturers. Its purpose is to provide sufficient information on a wide range of properties, applications and specifications so that interested parties will have a general understanding of the contribution (ESCS) materials can make to the construction industry.

The reference manual is designed as a living document, to be continuously amended and upgraded as new technology emerges. As such the loose-leaf format, with each page dated will allow for the insertion of new data developed by the Institute, member companies and the design and construction communities. If you have new information that will expand the lightweight industry or see errors or misrepresentation in the manual please pass this information on to The Expanded Shale, Clay & Slate Institute.

A number of published papers and reports as well as, ACI and ASTM documents have provided a basis for this manual. Chief among these references are:

- ACI 213, 2003 “Guide to Structural Lightweight Concrete”.
- Numerous ESCSI publications, brochures, information sheets, specifications.
- Peer reviewed articles published by ACI, ASTM and in the proceedings of International Symposia.
- The ESCS industry is especially grateful for the many fundamental contributions to technical journals of Professor Theodore W. Bremner, PE, PhD., and the ground breaking theoretical insight contained in this doctoral thesis, “Influence of Aggregate Structure on Low Density Concrete”, Imperial College of Science and Technology, London, U.K., 1981.
It should be understood that while the manual provides generalized base-line data, data specific to the physical and structural properties of member company aggregates and the concrete products produced with them takes precedence over values reported in this reference manual.

Although this document will have several hundred pages of text and more than 40 appendixes providing additional information and specifications it should be recognized that each chapter presents only a brief overview of the subject discussed. Fully presenting comprehensive information would make this “stand-alone” source an encyclopedia and totally unwieldy. Appropriate references are included on the page where the subject is discussed, and are listed in Chapter 17.

Permission to reprint and distribute any portion of this manual needs to be obtained in writing from the Expanded Shale, Clay and Slate Institute.

A considerable amount of basic aggregate/concrete technology is repeated in several locations. This approach was designed to allow various parts of this reference manual to be used individually, or collectively as in the case of Chapters 10, 11, and 12 which can serve the ESCSI stand alone report on lightweight aggregate masonry industry. In other cases the chapters were designed to parallel other documents such as ACI 211 proportioning.

This manual also represents ESCSI’s commitment to sustainability through the use of products that improve structural efficiency and have a low energy requirement, thereby reducing the amount of new raw material and energy needed to expand and maintain a healthy and productive global social structure.

Although not always immediately successful, our industry continually makes a major effort to provide an optimized building material while striving to have a positive effect on the natural environment. The ESCS industry is committed to moving forward by providing a quality lightweight construction material, while avoiding the potential traps as suggested in Proverbs, Chapter 27 verse 3.

“A stone is heavy, and sand is weighty,
But the annoyance caused by a fool is heavier than both”
TABLE OF CONTENTS

Chapter 1 Overview and History of the Expanded Shale, Clay and Slate Industry

1.1 Introduction
1.2 How it started
1.3 Beginnings of the Expanded Shale, Clay and Slate (ESCS) Industry
1.4 What is Rotary Kiln Produced ESCS Lightweight Aggregate?
1.5 What is Lightweight Concrete?
1.6 Marine Structures
 - The Story of the Selma
 - Powell River Concrete Ships
 - Concrete Ships of World War II (1940-1947)
 - Braddock Gated Dam
 - Off Shore Platforms
1.7 First Building Using Structural Lightweight Concrete
1.8 Growth of the ESCS Industry
1.9 Lightweight Concrete Masonry Units
 - Advantages of Lightweight Concrete Masonry Units
1.10 High Rise Building
 - Parking Structures
1.11 Precast-Prestressed Lightweight Concrete
1.12 Thin Shell Construction
1.13 Resistance to Nuclear Blast
1.14 Design Flexibility
1.15 Floor and Roof Fill
1.16 Bridges
1.17 SoilMatrix™ Applications
1.18 Asphalt Surface Treatment and Hotmix Applications
1.19 A World of Uses – Detailed List of Applications
 - SmartWall® High Performance Concrete Masonry
 - Asphalt Pavement (Rural, City and Freeway)
 - Structural Concrete (Including high performance)
 - Geotechnical
 - SOILMatrix™ Horticulture Applications
 - Specialty Concrete
 - Miscellaneous

Appendix 1A

ESCSI Information Sheet #7600 “Expanded Shale, Clay and Slate-A World of Applications...Worldwide

Chapter 2 Manufacturing of ESCS Lightweight Aggregates

Preface
2.0 Introduction and Overview
2.1 Geology
2.2 Mechanism of Expansion of Clay and Shale
2.3 Mining/Quarrying
2.4 Preparation of Raw Material
2.5 Firing in a Rotary Kiln
 Rotary Kiln Efficiency
2.6 Finish Grading of Aggregates

Chapter 3 Physical Properties of Structural Lightweight Aggregate

3.1 Definition of Lightweight Aggregates
 Lightweight Aggregate
 Structural Lightweight Aggregate
 Masonry Lightweight Aggregate
 Insulating Lightweight Aggregate

3.2 Particle Shape and Texture

3.3 Grading Lightweight Concrete Aggregate for Concrete

3.4 Relative Density of Aggregate Particle

3.5 Aggregate Bulk Density

3.6 Moisture Dynamics
 Absorption Characteristics
 Saturated Surface Dry
 Stockpile Moisture Content
 Full Saturation

3.7 Alkali Silica Reaction in Lightweight Concrete

Appendix 3A ASTM C 330-05 “Standard Specification For Lightweight Aggregate For Structural Concrete”

Appendix 3B ASTM C 331-05 “Standard Specification For Lightweight Aggregates For Concrete Masonry Units”

Appendix 3C ASTM C 332-99 “Standard Specification For Lightweight Aggregate For Insulating Concrete”

Appendix 3D ESCSI Worksheet for Calculating Aggregate Properties

Appendix 3E “Procedures For Determination of Density Factors of Structural Lightweight Aggregate”

Appendix 3F “Moisture Dynamics of Lightweight Aggregate and Concrete”, Holm, Ooi and Bremner.

Appendix 3G “Water-Vapor Adsorption-Desorption Characteristics of Selected Lightweight Concrete Aggregates”, Landren, PCA Bulletin ’78.

Appendix 3I ASTM C 1260-05a “Test Method for Potential Alkali Reactivity of Aggregates (Mortar Bar Method)”.

Appendix 3J Chapter 46 “Lightweight Concrete and Aggregates”, Significance of Tests and Properties of Concrete and Concrete-Making Materials, ASTM Special Technical Publication 169D
Chapter 4 Proportioning Structural Lightweight Aggregate Concrete

4.0 Introduction

4.1 Factors Affecting Proportioning of Lightweight Concrete
 Absorption characteristics
 “Saturated” Surface Dry
 Stockpile Moisture content
 Full Saturation
 Aggregate Grading and Effects of Relative Density
 Air Entrainment

4.2 Methods of Proportioning

4.3 Absolute Volume

4.4 Damp Loose Volume

4.5 Adjusting Mixture Proportions

4.6 Controlling Proportions in the Field

4.7 Meeting Project Specifications

4.8 Specified Density Concrete

4.9 Lightweight, Non-Structural “Fill” Concrete

4.10 Polymer Modified Lightweight Concrete

4.11 Shrinkage Compensated Cement Lightweight Concrete

4.12 Fiber Reinforced Lightweight Concrete

4.13 Insulating Grade Lightweight Aggregate and Insulating Concretes

Appendix 4A ACI 211.2-04 “Standard Practice for Selecting Proportions for Structural Lightweight Concrete.” (Under revision by 211.2 to be supplied later)

Appendix 4B ESCSI Publication #9340 “Moisture Dynamics in Lightweight Aggregate and Concrete” Holm, Ooi, Bremner, February 2004

Appendix 4C Determination of relative density factor of structural lightweight aggregate

Appendix 4D ESCSI Schematic Volume Computation Sheets.

Appendix 4E Supporting references contained in sections 4.10 and 4.11

Chapter 5 Measuring, Mixing, Transporting, Placing and Testing

5.0 Measuring, Mixing and Transporting

5.1 Placing
 Pumping Lightweight Concrete
 Consolidation
 Finishing Floors
 Curing

5.2 Laboratory and Field Control

5.3 Laboratory Testing Programs

Appendix 5A Evaluation of Non-Destructive Strength Testing of Lightweight Concrete
Chapter 6 Physical Properties of Structural Lightweight Concrete

6.0 Definition of Terms
6.1 Compressive Strength
6.2 Density
 Density of the Constituents of Concrete Mixtures
 Equilibrium Density-Self Loads
 Specified Density Concrete
6.3 Absorption
6.4 Internal Curing
 Introduction
 Testing Program
6.5 Contact Zone
 Implication of Contact Zone on Failure Mechanisms
6.6 Permeability
6.7 Pozzolonic Characteristics
 History
 Pozzolonic Characteristics
 Influence on Properties of Concrete
 Pozzolonic Reaction in the Contact Zone
6.8 Heat Flow Characteristics
 Thermal Conductivity
 Lightweight Concrete
 High Strength Lightweight Concrete
 High Strength Specified Density Concrete
 Specific Heat
 Thermal Diffusivity
6.9 Fire Resistance
 General
 High Strength Lightweight Concrete
 High Strength Specified Density Concrete
6.10 Refractory Concrete
6.11 Abrasion Resistance

Appendix 6B “Jet Exhaust Damaged Concrete”, Hronaka and Malvar, Concrete International, October 1998.
Appendix 6C Refractory Concrete Papers
Appendix 6D ESCSI Publication #4362 “Internal Curing Using Expanded Shale, Clay and Slate Lightweight Aggregate”
Appendix 6E Chapter 46 “Lightweight Concrete and Aggregates”, Significance of Tests and Properties of Concrete and Concrete-Making Materials, ASTM Special Technical Publication 169D
Chapter 7 Engineering Properties of Structural Lightweight Concrete

7.0 Introduction
7.1 Compressive Strength
 Maximum Strength Ceiling
7.2 Tensile and Shear Strength
 Tensile Strength of High Strength Lightweight Concrete
 Tensile Strength of High Strength Specified Density Concrete
7.3 Elastic Properties
 Modulus of Elasticity Approximations from ACI 318 Building Code
 Elastic Compatibility
 Elastic Compatibility of High Strength Lightweight Concrete
 Poisson’s Ratio
 Maximum Strain Capacity
 Seismic Ductility
7.4 Bond Strength and Development Length
7.5 Drying Shrinkage
 High Strength Lightweight Concrete
7.6 Creep
 Structural Lightweight Concrete
 Creep of High Strength Lightweight Concrete
7.7 Thermal Expansion
 High Strength Lightweight Concrete
 High Strength Specified Density Concrete
7.8 Fatigue
7.9 Fire Resistance
7.10 Behavior of Lightweight Concrete at Cryogenic Temperatures

Chapter 8 Durability and Service Life of Structural Lightweight Concrete

8.0 Historical Performance
8.1 Resistance to Freezing and Thawing
8.2 Resistance to Sulfate Attack
8.3 Resistance to Alkali-Aggregate Reaction
8.4 Carbonation
 Measurements of Carbonation Depth in Mature Marine Structures
8.5 Influence of Concrete Zone on Durability
 Contact Zone of Mature Concrete Subjected to Severe Exposure
 Related Studies on the Contact Zone
 Implications of Contact Zone on Failure Mechanisms
8.6 Long-Term Performance
 Treat Island
8.7 Design for 100 Year Life
Chapter 9 High-Performance Lightweight Concrete

9.0 Scope and Historical Development
9.1 Structural Efficiency of Lightweight Concrete
9.2 Applications of High-Performance Lightweight Concrete in Building Frames
9.3 Applications of High-Performance Lightweight Concrete in Bridges
9.4 Applications of High-Performance Lightweight Concrete in Marine Structures
9.5 The Federation International Du Beton has graciously granted Expanded Shale, Clay and Slate Institute (ESCSI) permission to present the following case study information on completed major lightweight concrete structural projects. This information is reported in the fib bulletin #8 “Lightweight Aggregate Concrete”, fib, CP 88, CH-1015, Lausanne, Switzerland.

Appendix 9B “Lightweight HPC on Route 106 Bridge in Virginia”, Ozyildirim, HPC Bridge Views, Issue No. 32, Mar/Apr. 2004
Appendix 9D The Federation International Du Beton has graciously granted Expanded Shale, Clay and Slate Institute (ESCSI) permission to present the following case study information on completed major lightweight concrete structural projects. This information is reported in the fib bulletin #8 “Lightweight Aggregate Concrete”, fib, CP 88, CH-1015, Lausanne, Switzerland.

Chapter 10 Physical Properties of Expanded Shale, Clay & Slate Lightweight Aggregate and Lightweight Concrete Masonry Units

Section A Properties of Lightweight Aggregates Used in Concrete Masonry

10.0 Introduction
10.1 Relative Density of Particles of Lightweight Aggregate
10.2 Absorption Characteristics of Lightweight Aggregate Particles
10.3 Aggregates Bulk Density
10.4 Grading of Lightweight Aggregates
 Fineness Modulus
 Theoretical Versus Practical Gradings
 Influence of Grading on Strength Making Considerations
 ASTM C 331 Grading Suggestion
10.5 Aggregate Contamination and Impurities
 Impurities and Deleterious Substances
 Popouts
10.6 Sampling and Testing of Lightweight Aggregate
 Conveyor Belts
 Stockpiles
 Aggregate Bins
 Rail Cars and Trucks
Sample Preparation
Sieve Analysis
Procedure

10.7 Thermal Expansion of Lightweight Aggregates and its Effect on Lightweight Concrete Masonry Units
10.8 Thermo-Structural Stability of ESCS Aggregates

Section B Properties of Lightweight Concrete Masonry Units

10.9 Density of Lightweight Concrete Masonry Units
10.10 Mixture Proportioning Procedures for Lightweight Concrete Masonry Units
10.11 Compressive Strength
10.12 Tensile Strength
10.13 Tensile Strain Capacity
10.14 Sampling and Testing of Lightweight Concrete Masonry Units
10.15 High Strength Lightweight Concrete Masonry Units

- Production of High Strength Lightweight Concrete Masonry Units
- Physical Properties of High Strength Lightweight Concrete Masonry Units
- Laboratory Strength Testing of High Strength Units
- Meeting Strength Specifications of Engineered Masonry Projects
- Performance of Engineered Masonry
- Built-In Advantages of Engineered Masonry

10.16 Durability (Resistance to Freezing and Thawing) of Concrete Masonry Units Made with ESCS and Ordinary Aggregates

Appendix 10A ASTM C 331 “Standard Specification for Lightweight Aggregates for Concrete Masonry Units”.
Appendix 10B “Recommended Combined Aggregate Gradation for High Quality Lightweight Concrete Masonry Units”
Appendix 10C Grading Worksheets
Appendix 10D Freezing and Thawing Resistance of Segmental Retaining Walls, ESCSI Information Sheet 3384.0
Appendix 10E ESCSI Guide Specification for Load-Bearing Lightweight Concrete Masonry Units, ESCSI Information Sheet 3001.0

Chapter 11 Properties of Walls Using Structural Lightweight Aggregate

11.0 Thermal Resistance and Energy Conservation with Structural Lightweight Concrete and Lightweight Concrete Masonry

11.1 Introduction

- Thermal Conductivity
- Thermal Conductivity of Aggregates and Cement Paste
- Influence of Moisture
- Thermal Conductivity of Concrete Used in Concrete Masonry Units
- Thermal Conductivity of Two-Phase Systems
- Thermal Conductivity Calculations Using the Cubic Model
Practical Thermal Conductivity
Calculation Methods for Steady-State Thermal Resistance of Wall Systems
Thermal Resistance of Concrete Masonry Units
Maximum “R” Values That Can Be Achieved With Insulated CMU’s
Thermal Resistance of Other Concrete Wall Systems
Thermal Inertia
Heat Capacity
Insulation
Daily Temperature Changes
Building Design
Calibrated Hot-Box Facilities
Computer Simulations of Buildings
Interior Thermal Mass
Thermal Properties for Passive Solar Design
Incorporating Mass into Passive Solar Designs
Summary
Condensation Control
Prevention of Condensation on Wall Surfaces Under Steady-State Analysis
Prevention of Condensation within Wall Constructions

Appendix 11.1A EESCI Information Sheet No. 4 “Thermal Insulation”, Reprinted 6/83
Appendix 11.1B “Thermal Inertia of Concrete and Concrete Masonry”, Holm, VanGeem, and Ries

11.2 Fire Resistance of Lightweight Concrete and Masonry
Definitions of Terms
Standard Fire Test
Factors Influencing Endurance of Concrete and Masonry Units
Effect of Structural Slab Thickness, Concrete Density and Aggregate Type on Fire Endurance
Temperature Distribution Within Concrete and Masonry members and Assemblies
Heat Transmission End Point
Structural End Point
Fire Resistance of Prestressed Concrete Floor Slab
Multi-Wythe Walls
Fire Resistance of Concrete Masonry Walls
Analysis of the Validity of the Fire Resistance Rating Contained in Table 6.
Field Performance of Lightweight Concrete Masonry Units
Appendix 11.2A Underwriters Lab Report of ESCSI equivalent thicknesses’ for 2, 3, and 4 hours
Appendix 11.2B Underwriters Lab UL 618
Appendix 11.2C Fire Resistance Ratings, Including “Estimated Ratings”

11.3 Acoustical Resistance of Structural Lightweight Concrete and Lightweight Concrete Masonry
 Resistance to Transmission of Airborne Sound
 Sound Absorption
 Resistance to Impact Sound

11.4 Resistance to the Environment of Structural Lightweight Concrete and Lightweight Concrete
 Freezing and Thawing Resistance
 Dimension Stability
 Impact Resistance
 Air Barrier Resistance
 Rain Penetration Resistance

Appendix 11.4A Impact Performance of Fully Grouted Concrete Masonry Walls

Chapter 12 Economics, Ergonomics and Efficiency of Lightweight CMU
12.0 Introduction
12.1 Factors Determining the Density of Block Concrete
12.2 Density of Block Concrete
12.3 Weights of Typical Concrete Masonry Units
12.4 The Effect Weight Has On Transportation/Shipping
12.5 Weights of Concrete Masonry Walls
12.6 Weights of Grouted Concrete Masonry Walls
12.7 Lower First Costs of CMU Walls
12.8 Life Cycle Energy Cost Analysis of Buildings
12.9 Ergonomics
12.10 Improved Quality, Value Added
12.11 Summary

Appendix 12A High-Performance Concrete Masonry, ESCSI Information Sheet 3650.3
Appendix 12B The Modern Approach to Masonry, ESCSI Information Sheet 365.2
Appendix 12C NCMA Investigation of Mason Productivity, ESCSI Information Sheet 3700.3.
Appendix 12D “Lightweight CMU-A Weight off our Shoulders”, ESCSI Information Sheet 3600.0.
Appendix 12E Ergonomic Progress Report-L. Welch, CPWR
Appendix 12F ESCSI Publication #3650.0 “SmartWall Systems®-The Answers”

Chapter 13 Sustainability
13.1 How a 2000 Year Old Industry Found Itself on the Leading Edge of Sustainable Construction
A Holistic Approach to Sustainability for the Concrete Community
What is Rotary Kiln Produced Structural Lightweight Aggregate and How Does it Interface with Concrete
Product Evaluation – Structural Lightweight Aggregate
Product Interface – Structural Lightweight Aggregate in Concrete
Structural Efficiency – Lightweight Concrete in Structures
Construction Efficiency – Environmental and Ergonomic Impact
Structural Performance – How Does ESCS Lightweight Aggregate Affect the Overall Performance of the Structure
How does SLA fit into the LEED™ Green Building Rating System
Economics of Sustainability
Overall Environmental Importance
U.S. CO2 Emissions by Sector
Energy Performance
Life Cycle Cost Performance
The Holistic Picture

Appendix 13A ESCSI Publication 7700 “Structural Lightweight Aggregates’ Holistic Contribution to Sustainable Development”.
Appendix 13B ESCSI Publication 8621 “SoilMatrix Gives Your Greenroof The Lightweight Advantage”
Appendix 13C ESCSI Project of the Month August 2002 “Utelite’s Environmentally Engineered Soil (E-Soil) Meets Horticultural Challenges in 5-Acre Rooftop Garden”

Chapter 14 Asphalt Applications (separate manual)
Introduction
ESCS Aggregate Industry Overview
How it is made
Aggregate properties
Where ESCS aggregate is used
ESCS Aggregate in the Asphalt Pavement Market
Usage
Background
Industry direction
The Benefits and Physical Properties of ESCS Asphalt Pavements
High friction resistance-public safety
Automobile damage-windshields, headlamps, paint chips
Adhesion of asphalt to aggregate
Pavement surface texture and aggregate top-size
Glare
Paint stripes
Tire noise
Snowplow damage
Strength-abrasion resistance
Aggregate durability: resistance to freezing, thawing, and sulfate action
14.5 General Design and Construction information
Specifications
Bidding, estimating and payments
Mixture designs
Construction considerations and advantages

14.6 Chip Seal Asphalt-Aggregate Surface Treatment
General considerations
Proper applications: city streets vs. rural highways
Aggregate grading and top size
Asphalt type
Asphalt and aggregate application rate
The excess aggregate menace
Embedment depths
Weather conditions
Rain
Construction procedures and equipment
Rolling operations
Spreading aggregate
Multi-course surface treatment
Equipment
Asphalt quantities and order of placing
Precautions
General
Road patches
Comments on the handling, construction, and service of ESCS chip seal
State and district personnel
Resident engineers and contractor personnel
Summarizing these observations on ESCS

14.7 Open-Graded Wearing Surfaces (Plant-Mix Seal)
Use and performance
General
Improve skid resistance
Splash and spray
Noise reduction
Hydroplaning
Wheel path
Water-susceptible pavements
Existing road conditions
Aggregate type and skid resistance
Mix design guidelines
Aggregate
Gradation
Void content
Tack coat
Asphalt
Stability
Design methods
Test methods
Construction
 Equipment and procedures
 Mix temperature
 Rolling
 Traffic
 Control test
 Precautions

14.8 Hot-Mix Asphalt (HMA) Surface Course
Projects, performance and superpave
Superpave
Design considerations
 Weight differences
 Design methods and general considerations
 Aggregate blending
 Workability
 Aggregate top size
 Rollers
 Slumping
 Bidding and payment

14.9 Thin Hot-Mix Asphalt (HMA) Overlays
Minimum weight
Water tightness
Stability
Improved skid resistance
Jet airfields and bridge decks

14.10 Maintenance and Pothole Material (Plant-Mixed)
Workability and stability
Storage life
Stripping due to water susceptibility
Mixture design
Field applications
 Pothole repair
 Adequate and proper tack coat
Plant operations
 Batch weights and segregation
 Equipment wear
 Water vapor release in the plant
 Aggregate drying rate and dryer capacity

14.11 Asphalt-Stabilized Bases with ESCS
Use
Structural design considerations
Mix design considerations
 Unit weight
 Resistance to the action of water
Aggregate gradation and selection
Construction considerations

14.12 Micro-Surfacing and Slurry Seal
Use
 Multi-course slurries
 Field conditions
Aggregate gradation
Asphalt emulsions and tack coat
Rate of application

14.13 Stabilized Aggregate Bases (made with ESCS and local soil binder), and ESCS Geotechnical Fills
Use
Stabilization of bases and sub-bases
 Mechanical stabilization (compaction)
 Chemical stabilization
Compaction of ESCS Geotechnical Fills
 Laboratory maximum-dry density
 Field or in-place density

14.14 Asphalt-Rubber Pavement
Asphalt-rubber chip seal
 Guidelines and specifications for use of asphalt-rubber chip seal
 Conclusions on the use and advantages of asphalt-rubber chip seal in the city of Phoenix, Arizona
Hot-mixed asphalt-rubber concrete pavements (open, dense, and gap-graded)
 Aggregate for dense-graded asphalt-rubber concrete
 Aggregate for open-graded asphalt-rubber concrete
California I-15 asphalt-rubber chip seal project

Appendix A State Specifications (Sections of)
- Colorado Section 409 Seal Coat
 Section 702.04 Emulsified asphalt
 Section 703 Aggregates
- Kansas Section 1109 Aggregates for cover material
- Louisiana Section 507 Asphaltic surface treatment
 Section 1003 Aggregates
- Oklahoma
- Texas Item 303 Aggregate for surface treatment (lightweight)
 Item 316 Surface treatment
 Item 318 Hot asphalt-rubber surface treatments
 Item 334 Hot mix-cold laid asphaltic concrete pavement
 Item 340 Hot mix asphaltic concrete pavement
Chapter 15 Miscellaneous Products and Applications of Lightweight Aggregate

15.0 Introduction

15.1 Horticulture Applications
 - Soil Amendment Principals
 - Green Roofs
 - Structural Soils
 - Hydroponics and Potting Soils
Herbicide Delivery

15.2 Environmental Medium Applications
 Introduction
 Septic Drainfields
 Self Contained Urban Storm Water Systems
 Recirculating Filters
 Wetlands Improvements

15.3 Manufactured Consumer Concrete Products
 Cement Wallboard
 Artificial Stone
 Concrete Roof Tiles
 Fireplace Logs, Boxes and Chimney Liners
 Precast Lawn and Garden Furniture and Ornaments

15.4 Sports Field Applications
 Baseball and Field Sports
 Running Tracks
 Golf Greens

15.5 Surface Applications
 Architectural Ground Cover
 Sub-Surface Insulating Loose LWA Fill
 Pipe Back Fill
 High Temperature Protection
 Under Slab on Grade
 Perimeter Insulation
 Insulation of Radiant Heated Floors
 Coverstone for Built-Up Roofs
 De-Slicking/Traction fro Icy Roads
 Fire Protection for Impermeable Plastic Liner

15.6 Specialized Non-Structural Concretes
 Roof Fill (Insulation and Slope to Drain)
 Topping on Wood Floors
 Pre-Mixed Bag Concretes
 Shotcrete
 Flair (Fine Lightweight Aggregate Internal Reservoirs-Admix DLYY
 system

15.7 References

Appendix 15B ASTM D 5883 “Standard Guide for Use of Rotary Kiln Produced Expanded shale, Clay or Slate (ESCS) as a Mineral Amendment in Topsoil Used for Landscaping and Related Purposes”.
Appendix 15C “Horticulture Applications for Lightweight Aggregate”, C. Friedrich, RLA, ASLA, Midyear 2000 ESCSI Meeting at Boulder, CO.
Appendix 15D “Dissolved Phosphorus Retention of Light-Weight Expanded Shale and Masonry Sand Used in Subsurface Flow Treatment Wetlands”, Forbes
Chapter 16 Geotechnical Use and Applications of Expanded Shale, Clay and Slate Structural Lightweight Aggregates (Separate Manual)

16.1 Introduction
16.2 Physical Properties of Structural Lightweight Aggregate
 Particle Shape and Surface Texture
 Grading of Lightweight Aggregate
 Relative Density of Aggregate Particles
 Aggregate Bulk Density
 Moisture Dynamics
 Absorption Characteristics’
 Saturated Surface Dry
 Stockpile Moisture Content
 Full Saturation
 Chemical Stability
 Durability Characteristics

16.3 Geotechnical Properties of Lightweight Backfill
 In-Place Compacted Density
 Shear Strength
 Tri-Axial Compression Tests
 Direct Shear Tests
 Interaction Between Lightweight Aggregate and Geotextiles
 Compressibility
 Cyclic Plate Load Tests on Lightweight Aggregate Beds
 Model Test on Peat Geotextile Lightweight Aggregate System
 Permeability of Lightweight Fills
 Thermal Properties of Lightweight Fills

16.4 Applications of Lightweight Aggregate Fills
 Lightweight Aggregate Fill at Waterfront Structures
 Port of Albany
 Lightweight Aggregate Fill Behind Retaining Walls
 Rhode Island State House of Providence River
 Lightweight Aggregate Fill on Elevated Structures
 Barney Allis Plaza, Kansas City, MO
 Lightweight Aggregate Fill over Soft Soils
 Load Compensation for Sinking Road Bed, Colonial Parkway, VA.
 Lightweight Aggregate Fill Reduces Settlement Over Unstable Soils,
 Morgan City, LA.
 Lightweight Aggregate Fill for Airport Runway, Norfolk, VA.
Lightweight Aggregate Backfill for Reduced Settlement of Levees
Lightweight Aggregate Fill for Bridge Applications
 Charter Oak Bridge, Hartford, CT
 Rehabilitation of Existing Bridge Abutments, Duke Street Bridge, VA.
Lightweight Aggregate Fill for Slope Stability
Lightweight Aggregate Backfill Over Buried Pipes
Lightweight Fill for Intermediate Layers
Lightweight Aggregate Backfill Behind Concrete Masonry Segmental Retaining Walls
Lightweight Aggregate Backfill for High Thermal Resistance
Lightweight Aggregate Backfill Provides Free Draining For Leachate In Waste Landfill

16.5 Economic Implications

Appendix 16A References
Appendix 16B Electrochemical Resistivity
Appendix 16C Compaction
Appendix 16D ESCSI Publications
Appendix 16E Published Articles

Chapter 17 References