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ABSTRACT 
 

This paper contains a compilation and synthesis of research relating to 
lightweight concrete and its use in highway bridges as designed using the 
AASHTO LRFD Bridge Design Specifications. Specific topics include creep, 
shrinkage, modulus of elasticity, modulus of rupture, flexural and axial force 
design, shear design, loss of prestress, and development length. For these 
topics, the existing LRFD provisions are generally adequate for the design of 
lightweight concrete members with concrete compressive strength up to 10.0 
ksi. Refinement of some provisions would improve their consistency and 
accuracy. 
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NOTE: 

This paper was first presented at the ESCSI Special Workshop on 
Lightweight Aggregate Concrete Bridges that was held May 7, 2008, in 
St. Louis, MO.  The workshop was held in conjunction with the 2008 
Concrete Bridge Conference.  This paper appeared as Paper 141 in the 
proceedings for the conference. 
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INTRODUCTION 
 
Significant research efforts are currently being performed under the National Cooperative 
Highway Research Program (NCHRP) and others to update and modify the AASHTO LRFD 
Bridge Design Specifications for use with higher concrete compressive strengths. This 
includes the use of lightweight concrete. As part of this effort, a compilation and synthesis of 
research relating to lightweight concrete and its use in highway bridges as related to the 
AASHTO LRFD Bridge Design Specifications was developed (Russell, 2007). This paper 
contains a comparison of the AASHTO LRFD design provisions with available research data 
for those provisions with the most available data. For details of all the provisions affected by 
lightweight concrete and those provisions for which research data with lightweight concrete 
are lacking, the reader is referred to the original report (Russell, 2007). Those provisions are 
not addressed in this paper. 
 
For purposes of this paper, lightweight concrete is assumed to have a density between about 
0.100 kcf and that of normal weight concrete. The paper does not differentiate between all-
lightweight and sand-lightweight concrete. 
 
The literature search concentrated on publications concerning North American materials and 
design practices. The research results are presented as a comparison with the AASHTO 
LRFD Bridge Design Specifications. Consequently, the units of the LRFD Specifications are 
generally used throughout the paper. 
  
 
ARTICLE 5.4 MATERIAL PROPERTIES 
 
5.4.2.3.2 CREEP 
 
A comparison of specific creep versus time for data by Harmon (2005), HDR (1998), Hoff 
(1992), Lopez et al. (2004), Pfeifer (1968), and Shideler (1957) is shown in Fig. 1. The data 
are plotted as specific creep versus concrete age. Specific creep, defined as creep strain 
divided by applied stress, is used because it does not depend on the initial elastic strain or 
modulus of elasticity of the concrete. The data in Fig. 1 are for a variety of concrete unit 
weights, compressive strengths, stress levels, aggregate sources, and loading ages. All of the 
creep data except those by Lopez et al. are based on 6x12-in. cylinders stored at 
approximately 73°F and 50 percent relative humidity during the tests. Lopez et al. used 4x15-
in. cylinders. The effect of stress level can be taken into account by using creep strain per 
unit stress or specific creep as plotted in Fig. 1. It is generally assumed that total creep strain 
is proportional to stress level up to a stress level of at least 40 percent of the concrete 
compressive strength at the age of loading. 
 
In addition to the data shown in Fig. 1, Vincent et al. (2004) performed creep tests on four 
batches of concrete. However, it is difficult to determine the ages of loading and the applied 
stress level from their report. It also appears that the load was increased during the test. 
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Fig. 1 Creep Data 

 
For comparison with the measured values, creep calculated using Eq. 5.4.2.3.2-1 of the 
LRFD Specifications is also shown in Fig. 1. The upper line is for a concrete 
compressive strength of 4.0 ksi and a modulus of elasticity of 2000 ksi at a loading age of 
7 days. The lower line is based on concrete compressive strength of 8.0 ksi and a modulus of 
elasticity of 3.75 ksi at a loading age of 7 days. These lines correspond to unit weights of 
about 110 and 130 pcf according to the revised equation for modulus of elasticity discussed 
in ARTICLE 5.4.2.4. Both lines are based on 6x12-in. cylinders. The two lines correspond to 
a wide range of creep properties but encompass most of the data except those of Pfeifer 
(1968). In many cases, the compressive strength of his concrete at the loading age of 7 days 
was less than 2.0 ksi and the ratio of stress to strength exceeded 0.40. 
 
The commentary to Article 5.4.2.3.1 states that without specific physical tests or prior 
experience with the materials, the use of the empirical methods referenced in the 
specifications cannot be expected to yield results with errors less than ±50 percent. A more 
detailed analysis is needed to determine if the separate variables in Eq. 5.4.2.3.2-1 represent 
the true behavior of lightweight concrete since the equation was based on normal weight 
concrete (Tadros et al., 2003). 
 
5.4.2.3.3 SHRINKAGE 
 
A comparison of shrinkage versus drying time for data by Hanson (1968), Hoff (1992), Holm 
(1980), Leming (1990), Lopez et al. (2004), Malhotra (1990), Ozyildirim and Gomez (2005), 
Pfeifer (1968), Rogers (1957), Shideler (1957), and Vincent et al. (2004) is shown in Fig. 2.  
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Fig. 2 Shrinkage Data 

 
These data are for a variety of concrete unit weights, compressive strengths, aggregate 
sources, curing conditions, and specimen sizes. These variations may contribute to the scatter  
in the data.  
 
For comparison with the measured values, the shrinkage calculated using Eq. 5.4.2.3.3-1 of 
the LRFD Specifications is also shown. The upper line is based on a 3x3-in. prism using a 
concrete compressive strength of 4.0 ksi at the start of shrinkage measurements. The lower 
line is based on a 6x12-in. cylinder using a concrete compressive strength of 9.0 ksi. 
 
The equations for shrinkage and creep were developed based on normal weight concretes 
(Tadros et al., 2003). Nevertheless, the upper and lower limits do encompass most of the 
range for lightweight concrete. 
 
5.4.2.4 MODULUS OF ELASTICITY 
 
The existing equation (5.4.2.4-1) for calculating modulus of elasticity is 
 

'5.1
1000,33 ccc fwKE =  (1) 

 
where: 
 
K1  =  correction factor for source of aggregate to be taken as 1.0 unless determined by 

physical test, and as approved by the authority of jurisdiction 
wc  =  unit weight of concrete (kcf) 
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f'c =  specified compressive strength of concrete (ksi)  
 
The NCHRP Project No. 12-64 titled "Application of the LRFD Bridge Design 
Specifications to High-Strength Structural Concrete: Flexure and Compression Provisions"  
(Rizkalla, 2007) compiled 4388 data points for concrete unit weights ranging from 0.090 to 
0.176 kcf, concrete compressive strengths from 0.4 to 24.0 ksi, and concrete modulus of 
elasticity from 710 to 10,780 ksi. Based on these data, the following equation was 
recommended to replace Eq. 5.4.2.4-1: 
 

33.0'5.2
1000,310 ccc fwKE =  (2) 

 
Comparisons of the measured data with values predicted using Eq. 5.4.2.4-1 and the 
proposed equation are shown in Figs. 3 and 4, respectively. The proposed equation improves 
the overall agreement between measured and predicted values and results in lower predicted 
values for lightweight concrete compared to values calculated using the existing equation. It 
should be noted that the spread of data is about ± 25 percent of the predicted values. 
 

 
Fig. 3 Comparison of Predicted and Measured Modulus of Elasticity for Eq. 5.4.2.4-1 

 
5.4.2.6 MODULUS OF RUPTURE 
 
A comparison of modulus of rupture versus concrete compressive strength is shown in Fig. 5 
for data by Harmon (2005), Heffington (2000), Hoff (1992), Malhotra (1990), Meyer (2002),  
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Fig. 4 Comparison of Predicted and Measured Modulus of Elasticity for Proposed Equation 

 
 

 
Fig. 5 Modulus of Rupture Versus Concrete Compressive Strength 
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Ozyildirim and Gomez (2005), Ramirez et al. (2000), Shideler (1957), and Tasillo et al. 
(2004). These data are for a variety of concrete unit weights, aggregate sources, curing 
conditions, and specimen sizes. Slate et al. (1986) recommended a modulus of rupture of 

0.21 '
cf  for compressive strengths from 3.0 to 9.0 ksi for moist cured lightweight concretes. 

No satisfactory correlation was found for dry-cured lightweight concrete. The measured 
modulus of rupture is sensitive to the curing conditions because specimens that are allowed 
to dry develop tensile stresses near the surfaces. This in turn results in a reduced measured 
value of the modulus of rupture. Specimens that are moist cured until test age have a higher 
measured modulus of rupture compared to specimens that are allowed to dry out. This 
difference is often larger than would be expected from the change in compressive strength. 
For comparison purposes, the two red lines in Fig. 5 show the modulus of rupture calculated 
using the provisions of Article 5.4.2.6 for sand-lightweight and all-lightweight concrete. The 
variation of splitting tensile strength with concrete compressive strength is presented later in 
ARTICLE 5.8 SHEAR AND TORSION. 
 
 
ARTICLE 5.7 DESIGN FOR FLEXURAL AND AXIAL FORCE EFF ECTS 
 
A comparison of maximum usable concrete compressive strain versus concrete compressive 
strength is shown in Fig. 6 for lightweight concrete data by Ahmad and Barker (1991), 
Ahmad and Batts (1991), Hoff (1992), Kaar et al. (1978), and Thatcher et al. (2002). For 
most of the data, the current assumed maximum usable strain of 0.003 for unconfined 
concrete is a conservative value for lightweight concrete. 
  

 
Fig. 6 Maximum Strain Versus Concrete Compressive Strength 
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5.7.2.2 RECTANGULAR STRESS DISTRIBUTION 
 
The equivalent rectangular stress block assumes a uniform compressive stress equal to 
0.85f'c. The 0.85 multiplier is sometimes called the α1 factor. Values of α1 versus concrete 
compressive strengths are shown in Fig. 7 for lightweight concrete data by Hoff (1992) and 
Kaar et al. (1978). In addition, there were 15 tests by Hanson reported by Hognestad et al. 
(1956) but specific values were not reported. 

Fig. 7 Variation of α1 Factor with Concrete Compressive Strength 
 

For comparison purposes, the value of 0.85 used in the LRFD Specifications is also shown in 
Fig. 7 as the solid red line. Based on test data for normal weight concrete, NCHRP Project 
12-64 has proposed that for concrete compressive strengths greater than 10.0 ksi, the value of 
α1 shall be reduced by 0.02 for each 1.0 ksi in excess of 10.0 ksi but shall not be less than 
0.75. This proposed relationship is also shown in Fig. 7 as the broken red line. Based on the 
limited data, it would seem that the existing and proposed relationships overestimate the 
value of α1 for lightweight concrete. Kaar et al. (1978) suggested that α1 should be taken as 
0.65 for all strengths of lightweight concrete. The value of α1 has little effect on the 
calculated flexural strength of under-reinforced sections but does affect the calculated axial 
load capacity where concrete compression controls. 
 
The equivalent rectangular stress block assumes that the uniform compressive stress acts over 
a depth of β1c, where c is the depth of the neutral axis from the extreme compression fiber. 
Values of β1 for different concrete compressive strengths are shown in Fig. 8 for data by Hoff 
(1992) and Kaar et al. (1978). For comparison purposes, the value of β1 used in the LRFD 
Specifications is also shown. For all values except one, the measured values exceed the 
LRFD values. 
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Fig. 8 Variations of β1 Factor with Concrete Compressive Strength 
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strengths were determined using the procedures of the Standard Specifications (AASHTO, 
1996) or the ACI Building Code (ACI Committee 318, 1983). However, since the procedures 
of the LRFD Specifications result in similar flexural strengths to those calculated using the 
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analysis of the test results using the LRFD Specifications may be warranted. 
 
5.7.4.4 FACTORED AXIAL RESISTANCE 
 
Pfeifer (1969) tested twenty 6-in. diameter lightweight concrete columns with concrete 
compressive strengths ranging from 4.42 to 7.60 ksi, steel yield strengths ranging from 50.0 
to 92.5 ksi, and percentage of reinforcement ranging from 0 to 8.38 percent. Measured 
strengths were compared with the equivalent of Eq. 5.7.4.4-2. The measured strengths were 
slightly less than predicted in most cases and significantly less than predicted when the steel 
yield strength was 92.5 ksi.  
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Fig. 9 Comparison of the Ratio of Measured to Calculated Flexural Strength with Concrete 

Compressive Strength 
 
 
ARTICLE 5.8 SHEAR AND TORSION 
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approach has changed from that used when the factors were developed, the modification 
factors remain the same. 
 
Data on the measured splitting tensile strength from 14 reports are shown in Fig. 10 (Hanson, 
1961, 1965, 1968; Heffington, 2000; Hoff, 1992; Ivey and Buth, 1966; Khaloo and Nakseok, 
1999; Malhotra, 1990; Mattock et al., 1976; Ozyildirim and Gomez, 2005; Pfeifer, 1967; 
Ramirez et al., 2000, 2004; and Vincent et al., 2004). The LRFD lines represent the above 
modifications for lightweight concrete. The line labeled "LRFD at 0.23" applies to normal 
weight concrete. The LRFD lines for lightweight concrete tend to overestimate the measured 
strengths. 
 

 
 Fig. 10 Splitting Tensile Strength Versus Concrete Compressive Strength 

 
Moore (1982) compared the shear strength and response of short columns made with 
lightweight and normal weight concrete subject to cyclic loading. He concluded that for 
columns with no axial load, the 15 percent reduction for shear specified in Chapter 11 of ACI 
318-77 (ACI Committee 318, 1977) for lightweight concrete was adequate but for columns 
with axial compression, the 15 percent reduction was not adequate. The 15 percent reduction 

refers to the use of '85.0 cf for sand-lightweight concrete in Article 5.8.2.2. 
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(Article 5.8.3.4.1). As a result of NCHRP Project 12-56 titled "Applications of LRFD Bridge 
Design Specifications to High-Strength Structural Concrete: Shear Provisions" (Hawkins et 
al., 2007), some additional changes may also occur in the future. 
 
Salandra and Ahmad (1989) tested eight reinforced lightweight concrete beams with shear 
reinforcement but only two failed due to diagonal tension cracking with the rest failing in 
flexure due to crushing of concrete in the constant moment region. Ramirez et al. (2004) 
tested five reinforced and four prestressed lightweight concrete beams. Measured strengths 
were compared with strengths calculated using the general and simplified methods of the 
LRFD Specifications (AASHTO, 1998) through the 2001 Interim Revisions. Meyer (2002) 
tested six prestressed lightweight concrete beams that failed primarily due to shear. Measured 
strengths were compared with strengths calculated using the 1998 LRFD Specifications 
(AASHTO, 1998). Meyer (2002) concluded that the 1998 Specifications provided a 
conservative prediction of shear strength. 
 
A comparison of the ratio of measured to calculated strengths versus concrete compressive 
strength for the tests by Meyer (2002) and Ramirez et al. (2004) is shown in Fig. 11. All 
measured strengths were greater than the calculated strengths. Although measured shear 
capacities exceeded calculated values, Ramirez et al. (2000) cautioned that the degree of 
conservatism was less with high-strength lightweight concrete. They recommended more 
research in the area of high-strength prestressed lightweight concrete beams especially with 
regard to the requirements for minimum transverse reinforcement. 
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ARTICLE 5.9 PRESTRESSING AND PARTIAL PRESTRESSING 
 
5.9.5 LOSS OF PRESTRESS 
 
The provisions of Article 5.9.5 for prestress losses were revised to a great extent based on 
NCHRP Project 18-07 (Tadros et al., 2003), which only investigated normal weight concrete. 
The commentary C5.9.5.1 clarifies that for lightweight concrete construction, an alternative 
method should be used. However, Article 5.9.5.3 allows the use of the losses in Table 
5.9.5.3-1 for lightweight concrete members other than those with composite slabs. 
 
Hanson (1964) measured the effect of type of curing on prestress losses of concretes made 
using two different lightweight aggregates. Prestressed concrete members were simulated 
using short post-tensioned members of two different sizes. Companion creep and shrinkage 
tests were made on 6x12-in. cylinders. 
 
Cousins (2005) reported on the measurement of prestress losses in three lightweight concrete 
girders of the Chickahominy River Bridge, Virginia. The bridge is a three-span structure 
made continuous for live load with two end spans of 81 ft 10 in. and a center span of 82 ft 10 
in. Each span consists of five AASHTO Type IV girders at 10 ft centers with an 8.5-in. thick 
lightweight concrete deck. 
 
Measured values of prestress losses were compared with those predicted using the procedures 
of the LRFD Specifications, NCHRP Report No. 469 (Tadros et al., 2003), and several other 
methods. Cousins (2005) concluded that the refined and approximate methods of the NCHRP 
report were suitable for a conservative estimate of total losses. 
 
Meyer (2002) monitored the prestress losses at three locations in each of six girders on 
beams being used to determine transfer and development lengths. Measured values were 
compared with calculated losses using the AASHTO Standard Specifications (AASHTO, 
1996). All measured values were less than the calculated values as shown in Figure 12.   
 
Kahn et al. (2005) reported prestress losses in four girders using two different concrete 
strengths. They compared the measured values with calculated values using the refined 
method and the lump sum methods of the LRFD Specifications (AASHTO, 1998). Their 
results are included in Fig. 12. In general, the refined method overestimated the losses, 
whereas the lump sum losses underestimated the losses for one of the mixes. 
 
 
ARTICLE 5.11 DEVELOPMENT AND SPLICES OF REINFORCEME NT 
 
Article 5.11.2.1.2 includes modification factors for development length and splices of 1.3 and 
1.2 for all-lightweight concrete and sand-lightweight concrete, respectively. In the 1989 
edition of the ACI Building Code Requirements for Reinforced Concrete (ACI Committee 
318, 1989), the factor for lightweight aggregate concretes was made equal to 1.3 for all types 
of aggregates when fct is not specified. According to the ACI 318-89 Commentary, research  
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Fig. 12 Comparison of Calculated and Measured Prestress Losses 
 

on hooked bar anchorages did not support the variations specified in previous codes for all-
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nearly equal to 65 percent of the values obtained with normal weight concrete (ACI 
Committee 408, 2003).  
 
5.11.4 DEVELOPMENT OF PRESTRESSING STRAND 
 
Transfer Length  
 
Measurements of strand transfer length in lightweight concrete have been reported by Kozlos 
(2000), Thatcher et al. (2002), and Ozyildirim and Gomez (2005) for 0.5-in. diameter strand; 
Peterman et al. (1999, 2000) for 0.5-in. special strand; and Meyer (2002) for 0.6-in. diameter 
strand. A graph of the ratio of measured to calculated transfer lengths versus concrete 
compressive strength is shown in Fig. 13. All of the data for Meyer and Ozyildirim had 
measured lengths less than the calculated length of 60 strand diameters. The data of Thatcher 
et al. has measured lengths less than and greater than the calculated length. Peterman et al. 
did not report actual values but concluded that the measured lengths were less than 50 strand 
diameters—the value used in the Standard Specifications.  
 

 
Fig. 13 Comparison of the Ratio of Measured to Calculated Transfer Length with Concrete 

Compressive Strength 
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Development Length 
 
According to Article 5.11.4.2, the development length of strand shall be calculated using Eq 
5.11.4.2-1 as follows: 
 

bpepsd dff 






 −κ≥
3

2
l  (3) 

 
where: 
 
db  =  nominal strand diameter (in.) 
fps  =  average stress in prestressing steel at the time for which the nominal resistance of the 

member is required (ksi) 
fpe  =  effective stress in the prestressing steel after losses (ksi) 
κ  =  1.0 for pretensioned panels, piling, and other pretensioned members with a depth of 

less than or equal to 24.0 in. 
κ  =  1.6 for pretensioned members with a depth greater than 24.0 in. 
 
Equation 5.11.4.2-1 without the κ factor was based largely on data from tests conducted by 
Hanson and Kaar (1959), which did not include lightweight concrete. The history of the 
development length equation was described by Tabatabai and Dickson (1993). 
 
Peterman et al. (1999, 2000) conducted 12 development length tests on rectangular single-
strand beams made with lightweight concrete and strand from two different manufacturers. 
The results indicated that the development length calculated using Eq. 5.11.4.2-1 provided 
sufficient embedment to develop the full capacity of a single strand. When the same 
combinations of strands and concrete were tested in multi-strand T-beams, the results were 
mixed. For one strand, flexural failures occurred indicating that the development length per 
Eq. 5.11.4.2-1 was adequate. For the other strand, bond, flexure, and a combination of bond 
and web shear failures occurred in different beams. 
 
Based on his tests, Meyer (2002) concluded that there was no need to differentiate between 
normal weight concrete and lightweight concrete made with a slate aggregate for concrete 
compressive strengths greater than 8.0 ksi.  
 
Thatcher et al (2002) performed 10 tests of lightweight concrete beams with 1/2-in. diameter 
strands and embedment lengths of 80, 70, and 60 in. They concluded that the embedment 
length was less than 60 in. as all specimens failed in flexure. The calculated embedment 
length per Eq. 5.11.4.2-1 with κ = 1.0 was 86 in. 
 
Ozyildirim and Gomez (2005) determined that the measured development length of 1/2-in. 
diameter strand was less than calculated using Eq. 5.11.4.2-1 with κ = 1.0. 
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CONCLUSIONS 
 
For the articles of the AASHTO LRFD Bridge Design Specifications discussed in this paper, 
the existing provisions are generally adequate for the design of lightweight concrete members 
with concrete compressive strength up to 10.0 ksi. Refinement of some provisions would 
improve their consistency and accuracy. 
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