First Use of High Strength Lightweight Precast Concrete in New Zealand*

Exterior of 40,000-seat Wellington Stadium nearing completion

WHY USE LIGHTWEIGHT CONCRETE?

Expanded shale aggregate supplied by TXI Pacific Custom Materials, Inc. in California, was used to produce lightweight concrete for all the precast components in the main stadium bowl structure. Concrete with a cylinder strength of 35 MPa was chosen for durability reasons, and also to achieve an overnight strength of 25 MPa for the efficient production of pre-tensioned units for the bleachers, long span inclined raker beams and pre-finished double tee flooring.

As the structure is located in close proximity to active earthquake fault lines, an innovative seismic damping system was used to ensure that the structure is not subjected to high ductility demands. Lightweight concrete, with a density of 1850 kg/m³, reduced the seismic loads and offered a number of other design and construction advantages for the difficult site conditions.

*Article Summary: From “The Wellington Stadium, New Zealand’s First Use of High Strength Lightweight Precast Concrete” by Leonard G. McSaveney, Golden Bay Cement, Division of Fletcher Concrete & Infrastructure, Ltd., Auckland, New Zealand.
STRUCTURAL LAYOUT

The structural layout consists of an oval bowl around the playing field (roofed only over spectator seating) and is connected by a two-level open walkway and parking building leading to the railway station. At the southern end there is a four-story administration building that also forms part of the main stand.

STRUCTURAL LIGHTWEIGHT CONCRETE CONSTRUCTION FAVORED

Lightweight concrete is commonly used for stadia construction around the world. While structural lightweight concrete had never before been used in New Zealand, many factors combined to favorably influence the choice of lightweight concrete for this project:

Poor Foundation Conditions–
The possibility of soil liquifaction during a major earthquake was a concern. Reducing the weight of the structure

WestpacTrust Stadium
Wellington New Zealand

“The construction of the WestpacTrust Stadium in New Zealand is a true testament to Texas Industries ability to cost effectively supply large volumes of high quality rotary kiln lightweight aggregate to the entire Pacific Rim.

We are very proud to be a part of the success of this wonderfully engineered and constructed pre-cast lightweight concrete structure.”

Jim Little
Sales Manager
Expanded Shale & Clay
California
resulted in substantial savings in the foundations by minimizing both the number of piles and their diameter. Lightweight concrete also reduced the financial risk in extending the piles if actual load capacities were less than the values predicted from the test bore information.

Severe Earthquake Forces – Geological evidence suggests that the Wellington Fault, located just a few hundred meters from the site, jumps 5 to 6 meters every 400 to 700 years. Reducing the concrete density reduced the design seismic forces in direct proportion to the reduction in mass.

Durability – Wellington has a well-deserved reputation as New Zealand’s windiest city. Frequent storms carry salt spray across the site from the nearby harbor. The exceptional durability of lightweight concrete meant that future maintenance costs would be reduced and that the financial viability of the stadium would be enhanced.

Rapid Construction – Scheduled major sporting and entertainment events presented the contractor with a demanding timetable that favored precast elements. With the nearest precast factory approximately 60 km away, the use of lightweight reduced the transportation costs for the 4,000 individual precast components needed. It also ensured that even the largest pieces of concrete could be transported on standard truck and trailer units. The need for special transporters, pilot vehicles, permits and other expenses were avoided.

Space Utilization – The architects favored long clear spans for the primary support structure. This allowed more versatility in the use of the space under the seating area. By reducing the self weight of the raker beams, bleachers and floor units, the need for columns was eliminated and the amount of reinforcement needed was reduced. The creation of more usable space with less material very favorably impacted the economic viability of the stadium.

Jointing – Joints in precast concrete are always costly. The use of lightweight concrete afforded the use of larger components and therefore fewer joints. The triple-riser bleacher units reduced the cost of circumferential joint waterproofing by two-thirds, while combining the raker beam and upper column into one precast element eliminated a very costly moment resisting connection that was repeated sixty-two times around the structure. Larger sized components also required fewer crane lifts and resulted in higher productivity on the site.

Crane Capacity – Limiting components to 32 tons kept them within the lifting capacity and reach of the available cranes. The advantage of not having to transport and rig special heavy-lift cranes was a sig-
significant cost saving. There were similar cost and program advantages in being able to place most of the floor and bleacher units with rail-mounted tower cranes.

Reduced Site Work – Lightweight concrete allowed the contractor the option of pre-finishing the double tee floor units in the precast factory. This eliminated the need to place and finish a layer of structural topping concrete on the site and reduced the risk of delays due to wet weather. This was a factor that allowed completion well ahead of schedule. The double tees, with the additional weight of a thickened top flange, were still within the lifting capacity of the tower cranes. Diaphragm action was maintained by a combination of welded and grouted connections.

Innovative Spirit – The Stadium Development Trust emphasized its desire to take advantage of all innovative ideas that could reduce cost without compromising quality. The contractor, Fletcher Construction also welcomed lightweight concrete as a means of differentiating their bid from those based on more traditional materials. The precaster and concrete supplier viewed the project as an opportunity to learn more about structural lightweight concrete, a material with a lot of potential in high seismic zones.

DESIGN

The potential of structural lightweight concrete to reduce cost was enthusiastically supported by the both the precast supplier, Stresscrete, and the structural engineers, Holmes Consulting Group.

Compliance with Standards – The New Zealand Concrete Structures Standard (NZS 3101:1995) contains modification factors for the use of structural lightweight concrete within the ranges of 1,400 to 2,500 kg/m³ (88-156 lb/ft³). However, because the seismic performance of lightweight concrete had not been well researched under cyclic earthquake loadings, the Standard requires that lightweight concrete shall not be used in structures designed for a ductility demand greater than 1.25 times yield. This was not a constraint for the design team since the form of the structural system, and the unique seismic damping built into the bleacher and double tee fixing, meant no parts of the precast lightweight concrete required high ductility.

Partial Prestress Design – All pretensioned units were designed as partially prestressed sections to limit the initial camber, to reduce camber variations, and to minimize long term creep shortening. This approach ensured very good fit of the installed floors and bleachers where there was no cast-in-place topping concrete to cover camber variations. Load tests verified the design assumptions, as well as the performance of the structural lightweight concrete.
PRECAST CONCRETE PRODUCTION

The decision to pre-tension the bleacher and flooring units was dictated by cost considerations and the Architect’s desire to maximize the spacing of the support frames. To achieve the required properties for the efficient production of pre-tensioned components, expanded clay, and shale aggregates were considered. These materials met the required concrete properties, had a long history of regular use for the production of precast, prestressed concrete and could be shipped from California at an economic price.

The imported expanded shale aggregate, supplied by TXI Pacific Custom Materials Inc. had a bulk density of 800 kg/m\(^3\) (50 lb/ft\(^3\)) and a moisture content that varied from 16% to 26%. In the precast yard, concrete could be placed in the moulds within 30 minutes of mixing, but to ensure that there was no significant slump loss due to the aggregate absorption, the surge storage pile was pre-wet by sprinklers. The mix contained natural river sand and 5% entrained air to meet the specified strength and density requirements given in Table 1.

Because of the variable aggregate moisture content, the concrete supplier, Firth Industries Ltd., elected to volume batch the lightweight aggregate. This was done by means of a profiling plate attached to the front end of the feed hopper as it fed the aggregate onto the belt, and counting mechanism on the belt end drum. The batch could dial up the required liters of lightweight aggregate, independent of the moisture content. Daily checks verified the accuracy of this system. There were no problems with the yield of the mix. Subsequent trials with weigh batching have proven that volume batching, while desirable, is not essential.

Placing and Finishing – Over-vibration of the lightweight concrete can cause the aggregate to float. However, the cement rich lightweight mix proved so much easier to screed and trowel than conventional precast mixes that production crews preferred working the lightweight concrete.

Spalling and Chipping – The propensity for heat-cured lightweight concrete to chip and spall while cooling caused some problems. Forms for lightweight precast components had to be manufactured to exacting standards, and the draw (or taper) on the end plates and rebate formers had to be more generous than the New Zealand precast industry normally uses. The thermal stresses within the section, as a heat-cured precast unit cools to ambient conditions, caused high tension at the surface that could cause large thin slabs of concrete to spall off if the unit were not handled carefully. Differential moisture contents due to surface drying effects while the interior is still moist also claimed to reduce the tensile splitting strength. After the precast units had cooled and cured they were more robust, but corners and edges were still vulnerable if mishandled.

Anchorage – Swiftlift lifting anchors were able to develop their full rated capacity and failure modes were identical to normal weight concrete.

Because the speed and ease with which drill-in anchors could be installed in the lightweight concrete, the contractor decided to install the anchors for the seat and handrail fixings on-site. This simplified the production of the bleacher units and was a decision that was applauded by the precaster. The crew installing the seats did, however, complain that the lightweight concrete, in spite of its “softness,”
seemed to be more abrasive than normal density concrete and caused more rapid bit wear.

Color – The large dark patches that occurred on the surface of some of the lightweight concrete units as they dried were a surprise. The condition was only temporary and rapidly faded as the humidity dropped and the weather warmed. Normal weight precast concrete wall panels cast in the precast factory during the same period showed similar dark blotches, but to a lesser extent.

Camber Variation – The variation in camber between the pretensioned, pre-finished double tees and between bleacher units was much less than Stresscrete had experienced with similar units cast from normal weight concrete. This was attributed to the very uniform properties of the manufactured lightweight aggregate, and to the rigorous production controls that the factory staff instituted while they learned to handle this new material.

Surface Finishes – Air voids trapped on the vertical formed faces of the precast units were slightly larger than would be expected with normal weight aggregates. Attempts to reduce these by adjusting the mix design and trying alternative release agents were not very successful, but self-compacting mix design philosophies were not attempted.

CONSTRUCTION

The structural concept did not require any structural lightweight concrete to be cast on the stadium site. The only issues the contractor had were the fragility of the corners and edges of those units that had not fully cured and dried before they were erected, and the need to allow the precast bleachers and double tees to shrink and creep before the joints were concreted.

The fragility of the relatively fresh precast concrete made it easy for the site erection crew to knock pieces off the precast were there was a lack of fit between the precast and structural steel details, for example. This practice was discouraged, but it was easier to use a hammer than a saw when the units was hanging on the crane hook.

DURABILITY

The chloride ion permeability and the resistivity of the lightweight concrete were tested, but this was more for interest than necessity. The markedly superior durability performance of structures built from expanded clay or shale aggregate is well documented and has been attributed to three unique properties:
Pozzolanic Action: The kiln-fired aggregate is mildly pozzolanic. Cement hydration products form silicates that actually grow across the paste-aggregate boundary, creating dense, impermeable concrete in spite of the porous nature of the aggregates. Under a microscope the exact aggregate past boundary of the stadium concrete was very difficult to detect. In contrast, the aggregate to paste boundary in equivalent strength normal-density concrete is marked by an easily defined, relatively weak layer that can allow chloride ions to penetrate the concrete.

Water Absorption: The ability of lightweight aggregates to absorb water prevents the accumulation of bleed water on the underside of aggregate particles. In normal weight concrete this water layer increases the water/cement ratio of the paste in a critical location and provides a path of weakness for chloride ions to penetrate the concrete. Another feature of the water absorbing properties of lightweight aggregate particles is their ability to slowly release this water for almost perfect curing of the cement paste: lightweight concretes can be self-curing. It is well known that better curing enhances concrete durability.

Reduced Stress Concentration: The stiffness of lightweight aggregate particles is very similar to the stiffness of the hardened cement matrix. Under load, lightweight concrete has the ability to sustain higher compressive stress levels before the onset of micro-cracking. Micro-cracks contribute to the chloride ion permeability of normal weight concrete.

SERVICEABILITY PROPERTIES
Lightweight concrete typically has a lower modulus of elasticity, higher creep, and higher shrinkage than normal density concrete of the same strength. These properties are manageable, both in design terms, and in practical terms. Tests were done to establish the numerical value of these properties [Table 1] and the designers selected member sizes, reinforcement and construction details that could perform adequately at the required serviceability limit states. In precast concrete construction, higher creep can offset higher shrinkage by reducing restraint forces. The use of precast components also allowed most of the shrinkage to occur before the final connections were made.

For the pre-tensioned, precast elements, cambers and deflections, and crack widths under load tests have been as predicted. In the complete structure, the seismic damping connection details allowed creep and shrinkage to occur unrestrained at each inclined raker beam. These joins have been monitored and are behaving as predicted.

ALKALI-AGGREGATE REACTIVITY
The lightweight aggregate chosen for the stadium project has a long history of use as a concrete aggregate in the USA. This information was considered to be more meaningful than any short term tests for alkali reactivity. As North America cements typically have a higher alkali content than currently available New Zealand-made cements, the imported aggregate was not tested. Research has also shown that the large pore space in lightweight aggregates can provide a reservoir to reduce the expansive effect of alkali-silica gel resulting from reactive sands.
CONCLUSIONS
The successful completion of the Wellington Stadium has been a learning process for the designers, the contractor and the precaster. The lessons were as follows:

1. Minimum seating lengths for simply supported lightweight concrete precast floor and bleacher units should be 85 mm (3 3/8”). This is 10 mm (3/8”) more than is common practice in New Zealand for normal weight concrete. This is a precaution to account for edge spalling in heat cured units that are likely to be mishandled.

2. Forms for double tees must be well built and in very good condition. Slight bowing in the web sides, between support stiffeners, can cause the units to bind and spall during de-tensioning.

3. End plates and rebate formers should have generous tapers to aid removal without excessive impact.

4. Precast units should be allowed time to cool, and preferably dry to the point where surface shrinkage stress are minimized, before being transported to the site.

5. Erection crews must be trained to avoid edge impact, or stress from crowbars used to lever the units into final alignment.

6. While the lightweight concrete is easy to drill, it can be very abrasive and may cause higher than normal bit wear.

7. Creep and shrinkage of expanded shale lightweight concrete is very similar to Wellington’s normal weight concrete.

8. Do not underestimate communication and training. In their crusade to save the world form innovative ideas, some people will resort to extraordinary behavior. Lightweight concrete will initially be blamed for any problems that occur.

The ultimate compliment for lightweight concrete has come from the factory and site labor forces. Their verdict is, “It’s just like normal concrete!” Only the crane operator reading his load indicator can tell the difference.

NOTE:
See Page 9 for Table 1 (Concrete Properties) and Page 10 for Figure 1 (Precast Elements).
Table 1
Concrete Properties for the Wellington Stadium (BRANZ Tests)

<table>
<thead>
<tr>
<th>Property</th>
<th>Specified or Assumed</th>
<th>Test Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer of prestress:</td>
<td>25 MPa</td>
<td>18 hours heat cured, 24 to 30 MPa</td>
<td>fib TG8.1 recommend a mean compressive strength within 90 days, 5 MPa higher than the specified cylinder strength at 28 days.</td>
</tr>
<tr>
<td>At 28 Days: 35 MPa</td>
<td></td>
<td>Average strength 44 MPa</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>1850 kg/m³</td>
<td>1845 kg/m³</td>
<td>Test result is oven dried plus 50 kg/m³ for permanently retained moisture.</td>
</tr>
<tr>
<td>Modulus of Elasticity</td>
<td>19.1 GPa</td>
<td>20 GPa at 28 days</td>
<td>Similar to normal weight concrete cast from some softer NZ volcanic aggregates.</td>
</tr>
<tr>
<td>Creep</td>
<td>Long term assumed creep factor 2.3</td>
<td>Measured value 1.8 after 3 months. Long term predicted value 3.0 from the CEB model</td>
<td>Prestressed designs adjusted to reduce long term losses. Seating details allow for creep shortening.</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>840 microstrain long term</td>
<td>14 day – 400 microstrain</td>
<td>Heat cured results. Prestressed designs adjusted to reduce long term losses. Seating details allow for some movement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 day – 590</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>56 day – 730</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEB prediction of long term value, 1250 microstrain</td>
<td></td>
</tr>
<tr>
<td>Modulus of Rapture</td>
<td>Not specified, but NZS3101 gives 4.02 MPa for 35 MPa Concrete</td>
<td>5.2 MPa at 28 days Standard Cured</td>
<td>Flexural beam tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8 MPa Heat Cured</td>
<td></td>
</tr>
<tr>
<td>Chloride Ion Diffusion</td>
<td>Equivalent to 40 MPa General Purpose cement concrete</td>
<td>4796 Coulombs Standard Cured</td>
<td>Tested at 28 days. 4400 Coulombs is typical for Wellington concretes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4562 Heat Cured</td>
<td></td>
</tr>
<tr>
<td>Resistivity</td>
<td>Equivalent to 40 MPa GP cement concrete (7,700 Ohm cm for Wellington GP concretes)</td>
<td>SSD 12,030 Ohm cm</td>
<td>Tested at 56 days.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dry 13,570 Ohm cm</td>
<td>Tested at 63 days.</td>
</tr>
</tbody>
</table>

NOTE: kg/m³ ÷ 16 = lb/ft³
MPa x 145 = psi
For Additional Information About Structural Lightweight Concrete

Expanded Shale, Clay and Slate Institute

Suite 102 • 2225 Murray-Holladay Road • Salt Lake City, Utah 84117
801-272-7070 • Fax 801-272-3377 • e-mail: info@escsi.org

www.escsi.org