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ABSTRACT 
 

 

Early-age cracking in mass concrete structures is a severe problem which could lead to long-term 

serviceability related problems in the structure.  In this project, the effect of using lightweight aggregates on 

the early-age cracking tendency of mass concrete was evaluated.  Concretes were made with 30% Class 

F fly ash to be representative of mass concrete and the following concrete types were made at water-to-

cementitious materials (w/cm) ratios of 0.45 and 0.38: 1) normalweight concrete, 2) internally cured 

concrete, 3) inverse sand-lightweight concrete, 4) sand-lightweight concrete, and 5) all-lightweight 

concrete.  Rigid cracking frames were used to measure from the time of setting until the onset of cracking 

the development of concrete stresses caused by autogenous and thermal shrinkage effects.  Rigid cracking 

frame specimens were tested under isothermal and match-cured temperature conditions.  The match-cured 

temperature condition simulated the edge of an 8 × 8 ft mass concrete column. 

The maximum in-place concrete temperatures increased as more lightweight aggregates were 

used in each mixture; therefore, care should be taken when using LWA concrete in mass concrete to make 

sure that the DEF temperature threshold is not exceeded.  The use of lightweight aggregates in concrete 

with low w/cm is beneficial to control early-age cracking, because it helps to mitigate autogenous shrinkage 

and lower the modulus of elasticity of the higher strength concrete.  The presence of LWA in concrete 

delayed the time to cracking, with SLW concrete providing the best overall resistance to early-age cracking.  

Although an increasing amount of LWA in the concrete will increase the maximum concrete temperature in 

mass concrete applications, the increasing use of LWA will reduce the modulus of elasticity, reduce the 

coefficient of thermal expansion, and eliminate autogenous shrinkage effects, which all contribute to 

improve the resistance to early-age cracking 
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Chapter 1 
 

Introduction 

 

1.1 BACKGROUND 

Mass concrete is defined by ACI 207.1R (2012) as “any volume of concrete with dimensions large enough 

to require that measures be taken to cope with the generation of heat from hydration of the cement and 

attendant volume change to minimize cracking”.  Mass concrete construction began in the United States 

with the construction of large scale concrete structures such as dams and foundations.  In 1930, the ACI 

committee 207 was formed to examine and solve problems related to cracking of dams.  Today, mass 

concrete includes dams, bridge elements as shown in Figure 1-1, mat foundations, etc. 

 With regard to size, the least dimension of the concrete element is important in deciding if the 

element can be categorized as mass concrete (Gajda and VanGeem 2002).  Most states and agencies 

designate mass concrete as elements with least dimension equal to or greater than 4 feet (Jahren et al. 

2014). 

Hydration of cementitious materials in concrete is an exothermic process, and a considerable 

quantity of heat is generated during the early stages of concrete construction (Neville 2011).  The result is 

a significant rise in temperature at the core of element, and a temperature difference between the interior 

and exterior of the element due to the heat transfer at the edge with the environment.  Two unique types of 

distresses can develop due to the high early-age temperatures that develop in mass concrete.  The first of 

these—known as thermal cracking—is primarily attributed to a large difference between the concrete 

temperature at the core and edge of the element.  Cracking occurs in the concrete when stresses in the 

concrete exceed the tensile strength of the concrete (Mehta and Monteiro 2013).  If the concrete member 

is subjected to differential heating and cooling, stresses are induced in the concrete and as a result, it can 

lead to early-age thermal cracking of the concrete member (Emborg 1989).  Concrete stresses are 

dependent on many factors such as the tensile strength, coefficient of thermal expansion, restraint 

conditions, modulus of elasticity, creep (relaxation), and temperature history (Emborg 1989).  Effective 

control of early-age cracking can result in reduced cracking at later ages, more durable concrete with lower 

overall porosity, and extended service life of the structure (Bentz and Weiss 2011).  Figure 1-2 is an 

example of thermal cracking in a bridge column in Texas. 
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Figure 1-1: Bridge column wrapped with insulating blankets (Jahren et al. 2014) 

 

 

Figure 1-2: Thermal cracking of a bridge column in Texas (Photo courtesy of Dr. J.C. Liu) 

 

The second type of distress of potential concern in mass concrete is known as delayed ettringite 

formation (DEF).  DEF is a form of internal concrete sulfate attack, which is triggered by high early-age 

temperatures, the availability of moisture, and the availability of sulfate that is internally present in the 

concrete (Taylor et al. 2001).  DEF causes an expansion in the concrete and this can lead to cracking, as 

shown in Figure 1-3. 
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Figure 1-3: Cracking due to DEF at the San Antonio Y overpass (Thomas et al. 2008) 

 

1.2 LIGHTWEIGHT AGGREGATES 

Lightweight aggregates (LWAs) have been used over the past 100 years from building ships to various 

structures.  Though found in nature, manufactured LWAs are becoming increasingly popular in the concrete 

industry.  Rotary kilns are used to produce lightweight aggregate (LWA) from shale, slate, and clay rocks 

under controlled conditions (Bremner and Ries 2009).  While the addition of LWAs reduces the density of 

concrete, an additional and valuable property is its ability to absorb large quantities of water.  The high 

internal pore volume of the LWAs acts as internal water reservoirs and when saturated the LWAs can 

supply water to the concrete to promote hydration of the cementitious materials, hence the term “internal 

curing of concrete” (Bentz and Weiss 2011). 

Different classifications of concrete are obtained when adding LWA to concrete, and the commonly 

used ones include sand-lightweight concrete (SLWC), all-lightweight concrete (ALWC), and “internally 

cured” concrete (ICC).  SLWC contains coarse LWA and normalweight fine aggregate, while ALWC 

contains both coarse and fine LWA.  ICC generally involves replacing a portion of fine aggregate with fine 

LWA.  Internal curing takes place in all concretes containing pre-wetted LWAs. 

Lightweight aggregate has a higher insulating ability when compared to normalweight aggregate 

(Maggenti 2007) and concretes containing LWA have been found to reach higher maximum in-place 
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temperatures due to hydration, as shown in Figure 1-4 (Tankasala et al. 2017).  Early-age cracking and the 

associated cracking risk of concrete are affected by several factors; therefore, a higher temperature 

difference alone does not render the concrete as more prone to early-age cracking (Byard and Schindler 

2010).  An earlier study concluded that the use of LWAs in bridge deck applications resulted in a significant 

improvement in resistance to early-age cracking when compared to normalweight concrete (Byard and 

Schindler 2010).  This improved behavior was observed in internally cured (IC), sand-lightweight (SLW), 

and all-lightweight (ALW) concretes, and was attributed to an increase in tensile strength and a decrease 

in modulus of elasticity, coefficient of thermal expansion (CTE), and autogenous shrinkage.  The study 

further concluded that although SLW and ALW concretes experienced higher peak temperatures, this did 

not translate to an increase in early-age cracking in bridge deck applications, and the reduction in CTE and 

elasticity modulus led to a significant overall delay of early-age cracking in bridge deck applications.  Hence 

from an initial assessment, it would appear that the compounded benefits associated with LWA could be 

beneficial to mass concrete placements; however, verification of this concept by laboratory and field tests 

or by more sophisticated analysis has not yet been conducted.   

 

 

Figure 1-4: Comparison of simulated core concrete temperatures for normalweight concrete (NWC), 

internally cured normalweight concrete (IC NWC), sand-lightweight concrete (SLWC), and all-lightweight 

concrete (ALWC) for an 8×8 ft cross-section size column (Tankasala et al. 2017) 
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1.3 PROJECT OBJECTIVES 

The primary objective of this study is to assess the effect of using lightweight aggregate on the early-age 

cracking tendency of mass concrete.  The impact of using ICC, inverse sand-lightweight concrete (ISLWC), 

SLWC, and ALWC on the early-age cracking of mass concrete relative to normalweight concrete will be 

quantified.  The secondary objectives of this study are as follows: 

 Evaluate the effect of using lightweight aggregate on the development of concrete temperatures in 

mass concrete applications, 

 Evaluate the compressive strength, splitting tensile strength, modulus of elasticity, coefficient of 

thermal expansion, and thermal diffusivity and determine their effect on the early-age cracking 

tendency of mass concrete, 

 Evaluate the effect of water-to-cementitious-materials ratio (w/cm) in concrete containing 

lightweight aggregates on the cracking tendency of mass concrete, 

 Compare the measured modulus of elasticity values to estimates from ACI 318 (2014) and 

AASHTO LRFD Bridge Design Specifications (2016) expressions, and 

 Compare the measured splitting tensile strength values to estimates from ACI 207.2R (2007) and 

ACI 207.1R (2012) expressions, and evaluate the applicability of lightweight modification (λ) factor 

to estimate the splitting tensile strength recommended by Green and Graybeal (2013). 

 

1.4 RESEARCH APPROACH 

Rigid cracking frames (RCF), as shown in Figure 1-5, were used to evaluate the development of early-age 

concrete stresses from the time of initial set to cracking (Mangold 1998).  Rigid cracking frames can 

measure the early-age development of thermal and autogenous stresses in hardening concrete.  The 

cracking frames can be programmed to simulate a unique temperature history, thereby allowing 

researchers to gain detailed information about the combined effect of the heat of hydration, modulus of 

elasticity, creep (relaxation), coefficient of thermal expansion, tensile strength, and restraint on the cracking 

tendency of concrete.  In this project, the cracking tendency of concretes was measured in the RCF, using 

a temperature profile to simulate mass concrete placement.  A detailed discussion of the rigid cracking 

frame is provided in Section 3.4.3.   

In addition to the cracking behavior of concrete specimens, the unrestrained free shrinkage was 

also determined using free-shrinkage frames (FSF), as shown in Figure 1-6.  A detailed discussion of the 

free-shrinkage frame is provided in Section 3.4.4.   

The time-depended development of mechanical properties were determined by performing 

compressive, splitting tensile, and modulus of elasticity tests at various ages as per ASTM C39 (2014), 

ASTM C496 (2014), and ASTM C469 (2014), respectively.  The cylinders used to test the time-depended 

development of mechanical properties were match cured to the temperature of the RCF specimens.  Semi-

adiabatic calorimetry was used to characterize the heat of hydration and thermal diffusivity of each concrete 
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as discussed in Sections 3.4.1 and 3.4.2, respectively.  The coefficient of thermal expansion of each 

concrete was determined as per AASHTO T336 (2009). 

Two groups of concretes, each with a w/cm of 0.38 and 0.45 were tested.  Each group of concretes 

contained five mixtures: a reference normalweight concrete, internally cured concrete, inverse sand-

lightweight concrete, sand-lightweight concrete, and all-lightweight concrete.  Ten concretes were thus 

produced under laboratory conditions and evaluated in this study.  The use of two different w/cm concretes 

allows one to assess the effect of w/cm on the cracking tendency and stress development of the lightweight 

aggregate and reference concrete mixtures.  For the lower w/cm concrete mixtures, the development of 

stress due to autogenous shrinkage were recorded under isothermal conditions.  In order to be 

representative of mass concrete, Class F fly ash at a 30% (by mass) cement replacement level was used 

in all mixtures. 

 

 

Figure 1-5: Rigid cracking frames used to evaluate the cracking potential of concretes  

(Byard and Schindler 2010) 

 

Cracking Frames 

Match Curing Box 
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Figure 1-6: Free-shrinkage frame used to evaluate the unrestrained free shrinkage of concretes  

(Byard and Schindler 2010) 

 

1.5 REPORT OUTLINE 

This report contains six chapters.  A literature review regarding early-age cracking, unique mass concrete 

issues, internal curing, lightweight aggregates, properties of lightweight aggregate, and the beneficial 

effects of lightweight aggregate in concrete is presented in Chapter 2.  The experimental testing program 

to evaluate the early-age stress development of concrete and properties is covered in Chapter 3.  In 

addition, the methods to assess the early-age stress development of concrete, temperature modeling of 

concrete, and properties of the materials used in the study are covered in Chapter 3.  The results of the 

experimental work performed for this study are presented in Chapter 4.  A discussion and synthesis of 

results are presented in Chapter 5.  The summary, conclusions, and recommendations of this research 

project are presented in Chapter 6. 
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Chapter 2 
 

Literature Review 

 

A summary of the available research literature relevant to this project is provided in this chapter.  The review 

includes a review of the factors responsible for early-age cracking, an overview of mass concrete structures 

and their associated temperature issues, lightweight aggregates, and the effects of internal curing on 

chemical and autogenous shrinkage along with its potential benefits for mass concrete applications.   

 

2.1  EARLY-AGE CRACKING 

Early-age cracking is primarily affected by the following factors (Emborg and Bernander 1994): 

 Temperature development in the structure, 

 Autogenous shrinkage associated with low w/c ratios, 

 Early-age creep effects, 

 Mechanical properties of the young concrete, and 

 Restraint of the structure. 

 

The effect of these factors on early-age cracking will be discussed in the remainder of this 

section. 

 

2.1.1  Temperature and Thermal Stress Development 

The thermal stresses can be computed from Equation 2-1 (Emborg and Bernander 1994).  Creep (or 

relaxation) effects at early ages need to be accounted for to obtain an accurate estimate of the stress 

developments (Emborg 1989). 

Thermal Stress = σT = ΔT × CTE × Kr × Ec     …………………......…….. (Equation 2-1) 

where,  

 ΔT  = temperature change = Tzero-stress - Tmin (˚F), 

 CTE  = coefficient of thermal expansion (strain/˚F), 

 Kr  = degree of restraint factor, 

 Ec  = creep adjusted elasticity of modulus (psi), 

 Tzero-stress  = concrete zero-stress temperature (˚F), and 

 Tmin  = minimum concrete temperature (˚F). 

 

In order to gain an understanding of the evolution of early-age thermal stresses and how it is 

impacted by concrete temperatures and mechanical properties, a fully restrained element with an uniaxial 

stress state is considered in Figure 2-1.  The concrete is placed in its fresh state under hot summer field 
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conditions.  Initially the concrete is in a plastic state and hence no stresses are present.  However, after 

final set is achieved, represented by time tfs, stresses begin to develop in the concrete.  The concrete 

hydration process is an exothermal reaction, and hence the concrete temperature begins to rise rapidly, 

starting from temperature at final set Tfinal-set to a maximum temperature Tmax (line B).  The continued rise in 

temperature initially induces compressive stresses in the concrete; however, due to early-age relaxation 

effects the compressive stresses are reduced in magnitude (Emborg 1989; Westman 1999).  When a 

concrete specimen is subjected to constant strain, creep manifests itself in the form of a progressive 

decrease in stress over time, and this phenomenon is known as relaxation (Neville 2011).  The mechanical 

properties such as the strength and stiffness of the concrete starts to develop at final set, tfs, and develops 

rapidly thereafter.  After the maximum temperature is reached, the temperature begins to drop and the 

concrete begins to contract as a result.  This results in the decrease of compressive stresses which 

eventually reaches a zero value at time tzs.  The corresponding temperature is known as zero-stress 

temperature Tzs.  The zero-stress temperature is often considerably higher than the final set temperature 

Tfs.  Beginning from time tzs the stresses in concrete change from compression to tension for the first time.  

After further cooling, the stresses begin to increase (tensile), and once the stresses exceed the tensile 

strength of the concrete, cracking occurs and the time of cracking is denoted as tc (Springenschmidt, 

Breitbucher and Mangold 1994).  Therefore, only the portion of tensile stresses, which develop after the 

zero-stress temperature is unfavorable and results in thermal cracks. 

 

 

Figure 2-1: Evolution of early-age thermal stresses (Schindler and McCullough 2002) 
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2.1.2  Autogenous Shrinkage  

The phenomena wherein the absolute volume of cement plus water decreases progressively with hydration 

is known as chemical shrinkage (Tazawa 1998; Holt 2001).  Before setting, this phenomenon results in 

volumetric change, however, no stresses are generated since the concrete is still in a plastic state (Holt 

2001).  At setting, enough hydration products have formed to provide a self-supporting skeletal framework 

in the paste matrix.  Water filled capillary voids are present in between the framework of solids.  As water 

is consumed by the ongoing hydration process, the voids empty and capillary tensile stresses are 

generated, resulting in volumetric shrinkage (Tazawa 1998; Lura et al. 2003).  The concrete volume change 

that occurs without mass loss, temperature variation, external force application, or restraint is called 

autogenous shrinkage (Tazawa 1998).  At early concrete ages, viscous behavior is quite pronounced and 

the smallest stresses make way for large deformations (Lura et al. 2003).  Stresses related to autogenous 

shrinkage may contribute significantly to early-age cracking (Tazawa 1998).   

For higher w/cm, generally above 0.42, autogenous shrinkage and related stresses are not a major 

concern (Holt 2001).  A graphical illustration of the relationship between chemical and autogenous 

shrinkage (horizontal direction) is shown in Figure 2-2, where C is the cement volume, W is the volume of 

water, Hy is the volume of hydration products, and V is the volume of voids. 

 

Figure 2-2: Volume reduction because of autogenous shrinkage (Tazawa 1998) 

 

2.1.3  Early-age Creep or Relaxation 

Creep can be defined as a gradual increase in strain with time under loading, i.e., an increase in strain 

under a sustained stress.  Alternatively, if the concrete is restrained in such a manner that it is subjected 

only to a constant strain, then creep manifests itself in the form of a gradual decrease in stress over a period 
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and this phenomenon is known as relaxation (Neville 2011).  Early-age creep or relaxation is generally 

beneficial in reducing early-age stresses and consequently cracking in concrete (Atrushi 2003). 

Creep tends to be influenced by a mixture of intrinsic and extensive factors.  Intrinsic factors include 

the strength, modulus of elasticity of aggregate, fraction of aggregate in the concrete mixture, and the 

aggregate size.  An increase in any of these factors results in a decrease in creep (Bažant 1982).  Extensive 

factors include temperature, pore water content, age at loading, etc. and their influence on creep is 

complicated (Bažant 1982).  Early-age creep data are scarce in literature owing to the complexity of testing 

concrete creep at early ages.  Compressive and tensile creep tends to increase with a rise in temperature; 

however, this is offset by an increase in hydration rate, which in turn reduces creep (Umehara et al. 1994; 

Bažant 1982).   

 

2.1.4  Mechanical Properties of Concrete 

2.1.4.1 Compressive Strength 

The compressive strength of concrete depends on many factors: the water-to- cementitious 

materials-ratio (w/cm), curing conditions, total air content, aggregate type, aggregate size, and rate of 

loading to name a few (Mehta and Monteiro 2013).  Numerous expressions exist for modeling the 

compressive strength of concrete (Hedlund 2000); however, for this study the exponential equation, 

Equation 2-2, developed by Freiesleben Hansen and Pederson (1977) is used. 

	

                                   fcሺteሻ = fcult × exp ൬- ቀ
τs
te
ቁ
βs
൰……………………….….……. (Equation 2-2) 

where, 

fc (te)  = compressive strength at equivalent age te (psi), 

fcult  = ultimate compressive strength parameter (psi), 

τs  = strength development time parameter (hrs), 

βs  = strength development slope parameter (unitless), and 

te  = equivalent age (hrs). 

 

2.1.4.2 Splitting Tensile Strength 

The tensile strength depends on similar factors as compressive strength; however, it is more 

sensitive to the quality of bond between the aggregate and paste.  Higher tensile strength values at early 

ages are desired to improve resistance to early-age cracking.  Splitting tensile strength can be estimated 

by Equation 2-3 (ACI 207.2R 2007), provided the compressive strength is known.  ACI 207.1R (2012) 



 

12 

adopted an expression from Raphael (1984), which is shown in Equation 2-4 for estimating the splitting 

tensile strength for mass concrete structures from a known compressive strength. 

 

fct=6.7 ×(fc)0.5		….…….…….….....………. (Equation 2-3) 

                                   fct =1.7 × (fc)
2
3	………………...............……. (Equation 2-4) 

where, 

 fct = splitting tensile strength (psi), and 

 fc = concrete compressive strength (psi). 

 

Greene and Graybeal (2013) also developed an expression, shown in Equation 2-5, to estimate 

the splitting tensile strength from known compressive strength values using a lightweight modification factor 

(λ).  The lambda modification factor is determined from the concrete density, as shown in Equation 2-6. 
 

                                  	 fct
''= 0.212 × λ  × ሺ݂ ′′௖ሻ

଴.ହ    …….......………….. (Equation 2-5) 

                                  0.75 ≤	 λ= 7.5 × wc
''≤	1.0 	………..........…..…..…. (Equation 2-6) 

where, 

w’’c = density of normalweight concrete or equilibrium density of lightweight concrete (kcf), 

f’’ct  = splitting tensile strength (ksi), 

 f’’c  = concrete compressive strength (ksi), and 

 λ  = lightweight modification factor (unitless). 

 

2.1.4.3 Modulus of Elasticity  

The modulus of elasticity is affected by the type of aggregate and the volume proportion of 

aggregate in the concrete (Neville 2011).  Equation 2-7 from ACI 318 (2014) is used to estimate the modulus 

of elasticity from the known density and compressive strength.  Recently, AASHTO (2016) adopted a new 

expression for determining the modulus of elasticity of concrete from known density and compressive 

strength values, and this expression is shown in Equation 2-8.  From both these equations, it can be seen 

that a decrease in concrete density results in a decrease in modulus of elasticity.  Lower modulus of 

elasticity of concrete will reduce early-age stresses and contribute to reduced cracking at early ages (Bentz 

and Weiss 2011; Byard et al. 2012). 

                                               Ec= 33 (wc)1.5(fc)0.5 ……………..…..…….. (Equation 2-7) 

             Ec
ଵሺwcܭ 120,000 =''

''ሻଶ.଴൫fc
''൯
଴.ଷଷ

…...…...…….. (Equation 2-8) 
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where, 

 Ec  = modulus of elasticity (psi), 

 E’’
c  = modulus of elasticity (ksi), 

 fc  = concrete compressive strength (psi),  

wc  = density of normalweight concrete or equilibrium density of lightweight concrete (lb/ft3),  

f’’c  = concrete compressive strength (ksi), 

wc
''	 = density of normalweight concrete or equilibrium density of lightweight concrete (kips/ft3), and 

K1 = aggregate correction factor (unitless) 

 

2.1.5  Degree of Restraint 

Degree of restraint is the ratio of the actual stress resulting from volume change to the stress that would be 

present if full restraint was present.  All concrete elements are restrained to a certain degree either by 

supporting elements or by different parts of the element itself (ACI 207.2R 2007).  Restraint of an element 

is impacted by many factors, with the important ones being its own modulus of elasticity, the modulus of 

elasticity of the restraining element, and the geometry of the structure (usually the cross-sectional area) 

(ACI 207.2R 2007).  While restrained volume change may induce a tensile, compressive or flexural state 

of stresses in concrete elements, those restraint conditions leading to a tensile state of stress in concrete 

are of concern due to their contribution to concrete cracking (ACI 207.2R 2007).  Lower restraint leads to 

lower stresses and various models for modeling of restraint are available in literature (Larson 2003; ACI 

207.2R 2007). 

 

2.2  UNIQUE MASS CONCRETE ISSUES 

 
Thermal stresses arising because of temperature differences between the zero-stress temperature and the 

temperature at cracking were discussed in the previous section.  However, unique temperature issues 

related to mass concrete exist.  An important distinction between normal concrete elements and mass 

concrete elements is their size and the thermal behavior.  Mass concrete is defined by ACI (ACI 207.2R 

2007) as “any volume of concrete with dimensions large enough to require that measures be taken to cope 

with the generation of heat and attendant volume change to minimize cracking”.  The minimum dimension 

for a structure to be defined as mass concrete varies across state agencies, but according to ACI 301 

(2016), if the least dimension of the concrete structure is greater than 4 ft, it can be considered a mass 

concrete structure.  Because of their size, high temperatures develop at the core of the mass concrete 

element which leads to increased risk of: 1) delayed ettringite formation (DEF), and 2) thermal cracking. 
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2.2.1  Delayed Ettringite Formation 

Delayed ettringite formation (DEF) can be described as the formation of ettringite after the concrete 

hardening process is completed and in which none of the sulfate which causes the ettringite formation 

comes from external sources (Taylor, Famy, and Scrivener 2001).  It is a form of internal concrete sulfate 

attack, which is triggered by high temperatures and availability of sulfate, which is internally present in the 

concrete.  Owing to their large size and high heat of hydration, mass concrete with only plain portland 

cement, that experiences temperatures more than 158˚F (70°C), are generally susceptible to DEF formation 

(Sylla 1988; Folliard et al. 2006; Livingston et al. 2006).  Distresses due to DEF may include map cracking, 

fracture of surfaces, and deterioration of strength in the concrete due to formation of ettringite crystals 

(Livingston et al. 2006).  Figure 2-3 shows a column of the San Antonio Overpass damaged because of 

DEF (Folliard et al. 2006).  Various state agencies place a restriction on the maximum concrete 

temperature, generally 160˚F, to prevent DEF (Jahren et al. 2014).  Incorporation of sufficient amounts of 

various supplementary cementitious materials (SCMs) helps in preventing DEF and the maximum 

temperature regulations may be relaxed in such cases (ACI 301 2016).  For example, if the cementitious 

content includes 25 percent (by mass) of cement replacement with Class F fly ash, then the concrete 

maximum temperature limit may be increased to 185°F to mitigate DEF (ACI 301 2016).   

 

 

Figure 2-3: Cracking observed in a mass concrete column due to DEF (Folliard et al. 2006) 

 

2.2.2  Thermal Cracking 

Thermal gradient can be defined as a temperature change along a specific path through the concrete 

structure (ACI 207.2R 2007).  There are two types of thermal gradients, mass and surface gradients.  The 

mass gradient refers to the long-term maximum internal temperature change of a large concrete mass as 

it cools from an internal peak temperature to a stable temperature equal to approximately the average 
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ambient temperature.  Surface gradients refers to the temperature differences between the core and the 

surface of the concrete member (ACI 207.2R 2007).  Due to their large size, and other factors such as 

thermal conductivity, specific heat, and density, the heat generated in the interior of a mass concrete 

member is not easily transferred through the concrete and thus high temperatures are sustained in the core 

for extended durations (ACI 207.1R 2012).  Also, heat generated at the surface can quickly be dissipated 

to the surroundings resulting in a lower surface temperature.  This difference in temperature between the 

surface and the core can cause large thermal gradients leading to severe cracks, which may reduce the 

long-term durability of the mass concrete element (ACI 207.1R 2012).  An example of thermal cracking is 

provided in Figure 2-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: Thermal cracking observed in a thick slab (Gajda 2007) 

 

Most state agencies limit the thermal gradients to 35˚F, and it is the most commonly used 

temperature differential limit in mass concrete projects (Jahren et al. 2014).  This approach was resorted 

to as a precautionary measure to prevent thermal cracking after early research projects involving dams in 

Europe used this 35°F limit (FitzGibbon 1976; Bamforth 1981).  Nonetheless, no readily available laboratory 

or field research evidence confirms the suitability of a maximum temperature differential of 35˚F for all 

concretes.  The use of supplementary cementitious materials, reduced concrete placement temperatures, 

and favorable ambient temperature are some of the factors which can reduce thermal gradients in a mass 

concrete structure.   
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2.3  LIGHTWEIGHT AGGREGATES 

Lightweight aggregate (LWA) occurs in nature and is found as pumice and scoria and have been used in 

lightweight concrete for over 100 years (Bremner and Ries 2009).  Modern LWA is manufactured from 

special deposits of shale, clay, or slate.  The diagram shown in Figure 2-5, taken from ESCSI Reference 

Manual (Holm and Ries 2007), details the LWA production process.  The raw materials for LWA are mined 

from deposits of clay, shale, slate, etc.  They are then crushed and sized (stored if necessary) and sent via 

a conveyor belt into a rotary kiln.  They are produced by heating graded particles into the high end of the 

rotary kiln, to a temperature of 2100˚F.  The rotary kiln is generally 60 to 225 ft in length with diameters 

varying between 6 to 12 ft.  The LWA spends 30 to 60 minutes in the kiln, with gradual heating occurring in 

the first 2/3rd of the kiln length and rapid heating in the final 1/3rd of the kiln length.  Upon heating the 

pyroplastic mass, gases are liberated which cause expansion, and the expansion is retained upon cooling.  

After cooling the expanded particles have a unique vesicular structure and contain pores that have a size 

range of approximately 5 to 300 μm developed in a continuous, crack-free, high-strength vitreous phase.  

After the cooling process the aggregates are crushed to appropriate gradations and shipped to concrete 

production plants (Holm and Ries 2007; ACI 213R 2013).   

 

 

Figure 2-5: Production of rotary kiln lightweight aggregate (Holm and Ries 2007) 
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 Pores close to the surface are readily permeable and rapidly absorb water within the first few hours 

of exposure to moisture; however, interior pores fill extremely slowly.  Non-interconnected interior pores, 

which form a small fraction of the total pores, are never filled even after years of immersion in water (Holm 

and Ries 2007).   

 

2.4  INTERNAL CURING 

 

Internal curing was originally defined by the American Concrete Institute (ACI) as "supplying water 

throughout a freshly placed cementitious mixture using reservoirs, via pre-wetted lightweight aggregates, 

that readily release water as needed for hydration or to replace moisture lost through evaporation or self-

desiccation."  In 2013, ACI changed the definition of internal curing to “a process by which the hydration of 

cement continues because of the availability of internal water that is not part of the mixing water” (ACI CT 

16).  The first published acknowledgement of internal curing dates to 1957, when LWA was used in 

production of concrete (Klieger 1957).   

During the hydration of cementitious materials, capillary pores are created.  Water present in the 

capillary pores continues to deplete as a result of hydration or due to external drying.  This results in the 

formation of partially-filled pores within the microstructure, leading to the development of air-water menisci.  

Capillary pressure is induced as a result, and concurrently a measurable stress is present.  These stresses 

are usually of concern when the w/cm is low (Lura et al. 2003).  LWA due to its high-water absorption 

capacity when pre-wetted and introduced in the concrete, can desorb water into the cement paste and as 

a result can relieve the concrete from autogenous shrinkage stresses (Bentz et al. 2005; Byard et al. 2012).   

The addition of pre-wetted LWA to concrete has been shown to enhance hydration, improve internal 

water movement, and mitigate autogenous deformation due to the availability of moisture provided by the 

aggregates (Bentz and Weiss 2011; RILEM TC 196 2007; Byard et al. 2012).  While other materials such 

as wood pulp fibers, perlite, and super absorbent polymer (SAP) may be used for internal curing, LWA also 

contributes to the load carrying capacity of the structure and its availability in the U.S. market makes it an 

attractive option to provide internal curing in concrete (Delatte et al. 2008).   

Different classifications of concrete are obtained when adding LWA to concrete, and the commonly 

used ones are sand-lightweight concrete (SLWC), all-lightweight concrete (ALWC), and “internally cured” 

(IC) concrete.  The latter generally involves replacing a portion of fine aggregate with fine LWA.  This name 

is commonly used in literature (RILEM TC 196 2007) even though internal curing takes place in all concrete 

containing pre-wetted lightweight aggregates.  For the sake of clarity, the term normalweight concrete 

(NWC) is used herein for concrete that does not contain any lightweight aggregate.   

It is estimated that the desorbed water can travel 0.07 in. into the paste from (around) each 

aggregate particle (Henkensiefken et al. 2011).  Therefore the use of fine LWA is preferred for internal 

curing when compared to coarse LWA, as it allows for an improved spatial distribution of moisture 

throughout the microstructure of the concrete. 
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Proportioning of concrete for internal curing requires that an adequate amount of internal water be 

provided to overcome the effects of autogenous shrinkage.  A simplified method to determine the amount 

of LWA needed to provide internal curing is provided with Equation 2-9 (Bentz et al. 2005).  The quantity of 

internal curing water required to achieve total saturation within the hydrating cement paste, is estimated as 

the amount required to compensate for chemical shrinkage occurring at the maximum expected degree of 

hydration.  While the goal of the method is to provide sufficient moisture to prevent autogenous shrinkage 

(self-desiccation), it actually provides enough internal curing water to mitigate chemical shrinkage, because 

it is difficult to only estimate the amount of autogenous shrinkage.  Hence, this method is conservative, 

since autogenous shrinkage is always less than chemical shrinkage (Tazawa 1998). 

 

             MLWA= 
Cf× CS ×αmax

S × ∅LWA
	…………………………....…….. (Equation 2-9) 

where, 

MLWA   = oven-dry weight of LWA (lb), 

Cf        = cement content (lb/yd3), 

CS      = chemical shrinkage (lb of water/lb of cement), 

αmax     = maximum degree of cement hydration (0 to 1), 

S         = degree of saturation of aggregate (0 to 1), and 

ΦLWA     = absorption of LWA (lb water / lb dry LWA). 

 

Chemical shrinkage can be computed by determining the mass composition of the Bogue 

components within the cement (generally provided by manufacturer) and the chemical shrinkage 

coefficients provided in Table 2-1 (Bentz et al. 2005).  For w/cm less than 0.36, the maximum degree of 

hydration can determined as (w/cm)/0.36.  When the w/cm is greater than 0.36, it is assumed that the 

maximum degree of hydration is unity (Bentz et al. 2005). 

 

Table 2-1: Coefficients for chemical shrinkage (Bentz et al. 2005) 

Bogue Compounds Coefficient (lb of water/ lb of solid cement phase) 

C2S 0.0704 

C3S 0.0724 

C3A 0.115* 

C4AF 0.086* 

            Note:  * Denotes assuming total conversion of the aluminate phases to monosulfate. 

 

An important consideration when using LWA is the amount of water that can be readily desorbed 

into the cement paste at high relative humidity values (i.e., ≥ 93% RH) (Castro et al. 2011).  When pre-

soaked LWA is added to the concrete mixture, the extra water is initially drawn from the larger pores in the 



 

19 

LWA and subsequently from the relatively smaller pores (Lura et al. 2003).  Various commercially available 

LWAs desorb between 85 to 98% of the absorbed water at 93% relative humidity (Castro et al. 2011).  

Desorption of water depends on the aggregate pore size distribution, the porous nature of the paste, and 

the internal relative humidity (RILEM TC 196 2007).  Table 2-2 provides the absorption values and 

desorption coefficient values for the LWA used in this study.  Desirable LWAs for internal curing generally 

have high absorption capacities, usually 10 to 30 percent by weight and high desorption capacities (Castro 

et al. 2011).   

 

Table 2-2: LWA absorption and desorption coefficients (Castro et al. 2011) 

Item Lightweight Aggregate - Shale 

Supplier Source Norlite (Albany, NY) 

Desorption coefficient at 93% relative humidity 0.955 

Absorption capacity at 24 h (%) 18.1 

Absorption capacity after vacuum (%) 21.2 

 

 

2.5  EFFECT OF LWA ON CONCRETE PROPERTIES  

 

2.5.1  Autogenous Shrinkage 

Numerous studies have concluded that incorporation of LWA in concrete can lead to increased availability 

of moisture in the concrete leading to minimal or zero autogenous shrinkage and related stresses (RILEM 

TC 196 2007; Weiss and Bentz 2010; Byard et al. 2012).  Replacement of fine aggregate with levels ranging 

from 7 to 33% (on a volume basis) of fine LWA has been shown to reduce or eliminate autogenous 

shrinkage (Henkensiefken et al. 2009).  In the case of sand-lightweight and all-lightweight concretes, 

autogenous shrinkage stresses were insignificant (close to zero), thus relieving a major component of early-

age stresses for the concrete (Byard et al. 2012).   

 

2.5.2  Coefficient of Thermal Expansion 

Lightweight aggregates in general have lower coefficient of thermal expansion when compared to normal- 

weight aggregates (Neville 2011).  A major reason is the phase transformation undergone by lightweight 

aggregates in their manufacturing process (Chandra and Berntsson 2003).  Concrete containing larger 

proportion of lightweight aggregates, including internally cured concrete, have lower coefficient of thermal 

expansion values (Byard et al. 2012).  A reduction in coefficient of thermal expansion is beneficial in 

reducing stresses due to thermal effects (Byard et al. 2012). 
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2.5.3  Mechanical Properties  

The effects of internal curing on the mechanical properties of the concrete depend on mixture proportions, 

curing conditions, and testing age.  In IC concrete, due to increased availability of moisture, the degree of 

hydration is higher than normalweight concrete (NWC) (Byard et al. 2012).  However, some LWAs are 

inherently weaker than their natural gravel or limestone counterparts owing to their porous structure (Mehta 

and Monteiro 2013.) Thus, there are two competing effects which affect the mechanical properties of 

concretes made with LWA.   

Schittler et al. (2010) found that when the replacement levels of sand with fine LWA is at 11 and 

24 percent (volume basis) in IC concretes, the 28-day compressive strengths were similar when compared 

with NWC.  Whereas they found, the tensile strengths of the IC concretes with a 20 percent (weight basis) 

replacement with LWA is higher than NWC by nearly 10 percent.  Sand-lightweight concrete was found to 

have enhanced compressive and tensile strengths than NWC at 28 days (Byard et al. 2012).  One of the 

reasons is the densification of the interfacial transition zone (ITZ), wherein water from the local LWA 

promotes hydration thus resulting in a stronger bond between the aggregate and the paste matrix (Neville 

2011).  There have also been studies (Raoufi 2011) which indicate that increasing replacement levels of 

LWA lead to an overall reduction in tensile strength.  This can be attributed to the different types of LWA 

available in the market.  All-lightweight concrete generally has lower compressive and tensile strengths due 

to a larger proportion of LWAs used in this concrete type (Byard et al. 2012).   

The modulus of elasticity of concretes containing LWAs is significantly lower than NWC.  The 

decrease in modulus of elasticity with concrete density can be estimated with either Equation 2-7 or 2-8.  

This is primarily because lightweight aggregates are less dense and have a porous structure (Neville 2011; 

Chandra and Berntsson 2003).  Therefore, concretes containing large amounts of LWAs, specifically sand-

lightweight and all-lightweight concrete, show a marked decrease in modulus of elasticity when compared 

with NWC (Raoufi 2011; Byard et al. 2012).  This reduction in modulus of elasticity is beneficial in reducing 

concrete stresses due to restraint, thermal, drying, and autogenous shrinkage effects (Byard et al. 2012).   

 

2.5.4  Creep  

While many factors affect creep, the water content and the effect of aggregates are most important (Neville 

2011).  LWA being softer aggregates impose reduced restraint to cement paste movements, so creep is 

expected to increase (Byard 2011).  The compliance with normalized elastic response of normalweight and 

slate lightweight mixtures with w/c of 0.42 loaded at 0.5 day is shown in Figure 2-6.  It can be observed that 

the compliance (i.e.  creep) is higher for the SLW and ALW concretes that contains large amounts of LWA 

(Byard 2011).  On average, lightweight concrete (LWC) experiences higher creep than NWC (Clarke 2002).  

This may be attributed to the lower modulus of elasticity in LWA concrete.  High creep (or relaxation) will 

reduce early-age stresses (Mehta and Monteiro 2013). 
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Figure 2-6: Compliance with normalized elastic response of normalweight and slate lightweight concretes 

with w/c of 0.42 loaded at 0.5 days (Byard 2011) 

 

2.5.5  Thermal Conductivity 

Thermal conductivity refers to the ability of the material to conduct heat.  The mineralogical composition of 

the aggregate significantly affects the thermal conductivity of the concrete.  For example, the higher the 

crystalline content, the higher its thermal conductivity (Neville 2011).  LWA has a porous structure, is less 

crystalline, and hence has a lower thermal conductivity than its normalweight counterparts (Neville 2011; 

Chandra and Berntsson 2003).  During the pours for mass concrete piers, Maggenti (2007) reported a 

higher temperature rise throughout the hydration process for concrete containing LWA when compared to 

concrete containing normalweight aggregates with identical cementitious and fine aggregate content.  This 

higher temperature rise can be attributed to a lower thermal conductivity and due to a lower density of 

concrete containing LWA (Chandra and Berntsson 2003).  



 

22 

Chapter 3 
 

Experimental Work 

 

3.1  EXPERIMENTAL PROGRAM 

Concrete containing various amounts of lightweight aggregate and cured under conditions simulating mass 

concrete were tested to assess their early-age cracking behavior.  These results were then compared to 

the response of a normalweight concrete made with river gravel and river sand as coarse and fine 

aggregate, respectively.  This mixture will be referred to as the reference mixture and did not contain any 

lightweight aggregates.   

Two rigid cracking frames (RCF) and one free-shrinkage frame (FSF) were used for evaluating the 

cracking tendency and cylinders were match-cured simultaneously to test the time-dependent development 

of mechanical properties.  A schematic of the test equipment and procedure is shown in Figures 3-1 and 3-

2.  Figure 3-1 schematically shows the match-cured temperature conditions used to test all concretes.  

Concrete in the match-cured RCF was cured to mass concrete (column) conditions and the thermal and 

autogenous stresses were recorded.  The concrete in the second RCF, as shown in Figure 3-2, was tested 

under isothermal conditions; therefore, only stresses developing because of autogenous shrinkage were 

recorded.  The FSF recorded the free-shrinkage strains for the match-cured specimens, with the concrete 

cylinder specimens match-cured in a similar fashion. 

The typical water-to- cementitious materials (w/cm) for mass concrete construction varies between 

0.38 and 0.55, hence two groups of concrete mixtures with w/cm mixtures of 0.38 and 0.45 were tested.  

Autogenous shrinkage development is important only for the low w/cm mixtures because for higher w/cm 

mixtures autogenous shrinkage is not a concern (Weiss and Bentz 2010). 

Class F fly ash is used increasingly in mass concrete mixtures since it decreases the heat of 

hydration (Schindler and Folliard 2005).  In this project, Class F fly ash at a cement replacement level of 30 

percent by mass was used, because a large amount of mass concrete construction used fly ash in the 

range of 25 to 30 percent and many state agencies have a minimum requirement of approximately 25 to 

30 percent (by mass) of fly ash for mass concrete construction (Jahren et al. 2014). 

Each group of w/cm mixtures contained five concrete mixtures, and they comprised of a reference 

concrete mixture and four concretes containing varying amounts of lightweight aggregate.  The use of two 

different w/cm mixtures allows one to assess the effect of w/cm on the cracking tendency and stress 

evolution of the lightweight aggregate and control concrete mixtures.  The ConcreteWorks program 

developed at UT Austin (Poole et al. 2006) was used to predict the concrete temperature development for 

each specific concrete mixture.  Since ACI 301 (2016) recommends that an element with least dimension 

of 4ft or greater be designated as mass concrete, the 8×8 ft column modeled in this study is representative 

of mass concrete.  The temperature development was modeled for an 8 × 8 ft size column for both w/cm 

concretes.  The temperature modeling is discussed in detail in Section 3.5. 
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Figure 3-1: Mass-concrete curing test setup 
 

 

 
Figure 3-2: Isothermal curing test setup 
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3.2 LIGHTWEIGHT AGGREGATES 

 

3.2.1 Source 

Expanded shale was used in the production of all concretes containing lightweight aggregates.  The type 

and source of the LWA is shown in Table 3-1.  One fine and one coarse gradation of LWA was shipped 

directly from the supplier in super sacks to Auburn University’s Concrete Materials Laboratory.   

 

Table 3-1: Lightweight aggregate source, type, and properties 

Item Shale Lightweight Aggregate 

Source Norlite Aggregates (Albany, NY) 

Type of LWA Fine Aggregate Coarse Aggregate 

Particle size 0 to #4 #4 to ¾ in. 

Relative density (SD§) 1.67 1.35 

Pre-wetted absorption * 20% 18% 

Fineness modulus 3.3 NA 

Note: * Measured water absorption after soaking in water for 7 days. 

                      § Relative density at surface-dry state after 7 days of soaking in water. 

 

3.2.2 Properties 

The LWAs were sampled upon arrival and their gradations obtained by sieve analysis as per ASTM C136 

(2014).  The specific gravity and moisture content were obtained in accordance with ASTM C127 (2014) 

and ASTM C128 (2014).  The samples were prewetted for a period of 7 days.  In order to obtain the 

absorption of pre-wetted LWA, the lightweight aggregates were sampled as per ASTM C1761 (2015).  This 

method is usually known as the “paper towel method” and utilizes commercial grade paper towels to 

determine the surface-dry condition of the LWAs.  The particle size, relative density, pre-wetted absorption, 

and fineness modulus results are shown in Table 3-1.  The gradations are provided in Appendix A. 

 

3.2.3 Lightweight Aggregate Preconditioning 

The lightweight aggregates (LWA) were placed in water-filled 55-gallon plastic barrels for moisture 

preconditioning.  The LWAs were submerged in plastic barrels for a period of 7 days, as shown in Figure 

3-3.  The presence of valves at the bottom of the barrel aided in draining the water.  A 6 in. thick filter layer 

of normalweight aggregates were placed at the bottom of one of the barrels for filtering fine LWA.  This 

layer facilitated draining of water without any clogging occurring in the valve.  Water was slowly drained 

after prewetting to reduce the amount of fine LWA lost.  Oval-shaped steel tanks with a design similar to 

the barrels were also used.  After soaking for 7 days, the excess water was drained and the lightweight 

coarse and fine aggregate separately placed on a plastic sheet.  The excess surface moisture was allowed 

to evaporate until the surface-dry condition was achieved.  Following which, they were placed in sealed 
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five- gallon buckets for batching.  Prior to mixing the concrete, aggregate samples were sampled to 

determine their moisture content, which was used to make moisture corrections on the concrete 

proportions.  The laboratory environment was maintained at a constant temperature of 73°F; hence no 

temperature preconditioning was required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Illustration of barrel setup used for lightweight aggregate preconditioning (Byard and 

Schindler 2010) 

 

3.3 MIXTURE PROPORTIONS 

Five types of concrete mixtures were assessed at two different w/cm.  They consisted of a reference 

normalweight concrete (REF), internally cured (IC) concrete, sand-lightweight (SLW) concrete, inverse 

sand-lightweight (ISLW) concrete, and all-lightweight (ALW) concrete.   

For clarity, a mixture identification system is used in this report to refer to a specific concrete mixture 

containing a specific amount of LWA and w/cm.  The identification system is as follows: 

 

Mixture Type     and              w/cm 

 

       

      REF  = Reference concrete                   0.45 

      ICC  = Internally cured concrete                          0.38 

      ISLWC  = Inverse sand-lightweight concrete  

      SLWC  = Sand-lightweight concrete 

      ALWC  = All-lightweight concrete 
 

Example:   ALWC 0.45, represents the all-lightweight concrete with a w/cm of 0.45. 

 

Lightweight 
fine aggregate  

Normalweight 
coarse 
aggregate “filter” 

Lightweight 
coarse 
aggregate  

Drain valve  
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The mixture proportions for the two groups of concretes made at w/cm of 0.45 and 0.38 are shown 

in Tables 3-2 and Tables 3-3, respectively.  LWAs may never reach a state of 100 percent saturation, hence 

the term saturated-surface dry is not used for them, and instead the term pre-wetted surface dry is used for 

LWAs.  Therefore, the LWA batch weights are for pre-wetted surface-dry (SD) conditions.   

 

Table 3-2: Proportions and properties for all w/cm = 0.45 mixtures 

Item 
REF  
0.45 

ICC  
0.45 

ISLWC 
0.45 

SLWC  
0.45 

ALWC  
0.45 

Water Content (lb/yd3) 263 263 263 263 263 

Cement Content (lb/yd3) 410 410 410 410 410 

Class F Fly Ash Content (lb/yd3) 175 175 175 175 175 

SSD Normalweight Coarse Aggregate (lb/yd3) 1740 1740 1425 0 0 

SD Lightweight Coarse Aggregate (lb/yd3) 0 0 0 910 857 

SSD Normalweight Fine Aggregate (lb/yd3) 1220 1000 0 1190 0 

SD Lightweight Fine Aggregate (lb/yd3) 0 140 975 0 820 

Water-Reducing Admixture (oz/yd3) 16.0 14.0 11.0 0.0 0.0 

Mid-Range Water-Reducing Admixture (oz/yd3) 0.0 0.0 3.0 22.0 18.0 

Rheology-Controlling Admixture (oz/yd3) 0.0 0.0 10.0 0.0 32.0 

Air-Entraining Admixture (oz/yd3) 1.0 1.0 1.0 3.5 3.5 

Target Total Air Content (%) 5.0 5.0 5.0 5.0 5.0 

Water-to-Cementitious Materials Ratio (w/cm) 0.45 0.45 0.45 0.45 0.45 
 

Table 3-3: Proportions and properties for all w/cm = 0.38 mixtures 

Item 
REF 
0.38 

ICC  
0.38 

ISLWC 
0.38 

SLWC 
0.38 

ALWC 
0.38 

Water Content (lb/yd3) 243 243 243 243 243 

Cement Content (lb/yd3) 435 435 435 435 435 

Class F Fly Ash Content (lb/yd3) 195 195 195 195 195 

SSD Normalweight Coarse Aggregate (lb/yd3) 1740 1740 1425 0 0 

SD Lightweight Coarse Aggregate (lb/yd3) 0 0 0 910 857 

SSD Normalweight Fine Aggregate (lb/yd3) 1220 1000 0 1190 0 

SD Lightweight Fine Aggregate (lb/yd3) 0 140 975 0 820 

Water-Reducing Admixture (oz/yd3) 20.0 20.0 0.0 0.0 0.0 

Mid-Range Water-Reducing Admixture (oz/yd3) 0.0 0.0 22.0 28.0 26.0 

Rheology-Controlling Admixture (oz/yd3) 0.0 0.0 12.0 0.0 34.0 

Air-Entraining Admixture (oz/yd3) 1.0 1.0 1.0 3.5 3.5 

Target Total Air Content (%) 5.0 5.0 5.0 5.0 5.0 

Water-to-Cementitious Materials Ratio (w/cm) 0.38 0.38 0.38 0.38 0.38 
 

The reference mixture as explained in previous sections was proportioned to represent mass 

concrete mixtures commonly used in the state of Alabama and meets the requirements of the Alabama 

Department of Transportation.  In this study the ICC was proportioned to meet the requirements of 
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normalweight concrete as per AASHTO LRFD Bridge Design Specifications (2016).  Hence the amount of 

LWA was calculated so that the equilibrium density of the mixture was 135 pcf or greater.  Therefore, the 

ICC mixtures contained less LWA than that required by the Bentz formula (Bentz et al. 2005).   

The SLWC contained coarse LWA and normalweight fine aggregate, the ISLWC contained coarse 

normalweight aggregates and fine LWA, while ALWC contained both coarse and fine LWA.  A slump of 4 

± 1 in. and total air content of 5.0 ±1.5% was targeted.  The measured densities were to be within ± 1 pcf 

of the calculated density for each concrete mixture.  These values represent typical fresh concrete 

properties used in mass concrete production. 

The amount of internal curing water required by the Bentz formula and the amount of internal curing 

water provided by each concrete, is presented in Table 3-4.  The absorption values and the desorption 

coefficients were computed from values presented from Equation 2-9 (Bentz et al. 2005).  As can be seen, 

the amount of internal curing water supplied by the LWA is less than the amount required by the Bentz 

formula.  During the internal-curing process, it is assumed that the normalweight aggregate does not 

contribute to the process of internal curing, owing to its low absorption capacity in comparison to LWA.  The 

data in Table 3-4 indicate that for ICC mixtures having w/cm of 0.45 and 0.38, the amount of internal curing 

water provided is 33 and 38 percent, respectively, less than the amount of water required by the Bentz 

formula.  All SLW, ISLW, and ALW concretes supply more water than that required by the Bentz formula. 

 

Table 3-4: Total absorbed water available from LWA and water required by Equation 2-9 

Concrete Type 

Internal Curing Water 
Available from LWA 

(lb/yd3) 

Water Required by 
Equation 2-9 

(lb/yd3) 

w/cm = 0.45 w/cm = 0.38 w/cm = 0.45 w/cm = 0.38 

Internally cured concrete 27 27 41 44 

Inverse sand-lightweight concrete 195 195 41 44 

Sand-lightweight concrete 180 180 41 44 

All-lightweight concrete 318 318 41 44 

 
 

3.4 TEST METHODS 

 

3.4.1 Heat of Hydration Characterization 

The hydration reaction of portland cement and fly ash with water is an exothermic reaction, resulting in a 

temperature rise of the concrete specimen.  Knowledge of this temperature rise during the hydration 

process helps in predicting the early-age temperature history of a concrete structure (Morabito 1998).  The 

temperature rise over a period of time is unique for every concrete mixture proportion (Schindler and Folliard 

2005).  Semi-adiabatic calorimetry is employed in this study to characterize the temperature rise of each 

concrete.   
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Adiabatic calorimetry refers to a test method wherein a specimen is placed in an insulated chamber 

and no heat exchange (loss or gain) occurs with the surroundings.  Semi-adiabatic calorimetry (SAC) is the 

condition in which, the rate of heat exchange is controlled from the concrete specimen with the help of 

insulating material and no external sources of heat are employed (Morabito 1998).  Calibration of the SAC 

ensures that the heat loss is known and accounted for.  This setup is convenient and provides accurate 

means of measuring the heat released during the hydration process (RILEM 119-TCE 1998). 

In this study, a QDrum (iQuadrel) illustrated in Figure 3-4, was used as SAC.  The laboratory 

equipment for performing the test was supplied by Digital Site Systems, Pittsburg, PA.  No standard ASTM 

test procedure is available, therefore a draft RILEM procedure was used (RILEM 119-TCE 1998).  The SAC 

setup comprised of an insulated 55-gallon drum, instrumented with sensors to measure the concrete 

temperature, ambient temperature, and the amount of heat lost through the calorimeter wall.   

Prior to testing the heat of hydration of concrete, a calibration test must be performed to calculate 

the thermal losses of the SAC.  Water of a known temperature was placed inside and the thermal losses of 

the calorimeter computed (Schindler and Folliard 2005).  The thermal loss is a function of the insulating 

components and the differences between the sample and ambient temperature.   

Trial batches were performed to establish whether the total air content, slump, and other fresh 

concrete properties met the required project mixture design parameters.  Following which, fresh concrete 

was consolidated in a 6×12 in. cylinder mold, that was weighed before being placed in the calorimeter.  A 

temperature probe was fitted into the mold and the drum was sealed.  Data was recorded for a period of 5 

days.  The hydration parameters were then computed using the SAC data (Schindler and Folliard 2005). 

 

 

Figure 3-4: Semi-adiabatic calorimeter (adapted from Weakley 2009) 
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3.4.2 Thermal Diffusivity Evaluation 

To assess the specific heat of the lightweight aggregates, the thermal diffusivity of the concrete was back-

calculated using the SAC test apparatus.  After casting, a 6×12 in. cylinder was moist cured for a period of 

7 days.  After 7 days, the concrete cylinder was sealed and heated to approximately 160˚F and then sealed 

in the SAC.  The thermal decay was measured for a period of 5 days and the thermal diffusivity was back- 

calculated to fit the measured thermal decay curve.  This allows one to determine the specific heat of the 

coarse LWA in the SLW concrete, since the specific heat of the remaining aggregates are established from 

published values, shown in Table 3-5 (Xu and Chung 2000; Robertson 1988).  The same procedure was 

repeated for the ALW concrete and the specific heat of the fine LWA was determined. 

 

Table 3-5: Specific heat of concrete materials from published data  

Concrete Raw Material  Specific heat (Btu/lb per °F) 

Portland cement 0.17 

Fly ash 0.17 

River gravel coarse aggregate 0.20 

Natural river fine aggregate 0.20 

Water 1.00 

 

With knowledge of the thermal and hydration parameters of the concrete, a temperature profile for 

mass concrete placement during fall season (placement temperature ~73˚F) was determined using the 

ConcreteWorks program (Poole et al. 2006).  ConcreteWorks allows one to simulate the environmental 

conditions such as wind, temperature, humidity, etc. and other factors such as formwork, concrete 

placement time, etc.  The temperature modeling conditions and other parameters used for the 

ConcreteWorks analysis are covered in detail in Section 3.5. 

 

3.4.3 Restrained Stress Development 

The rigid cracking frame (RCF) was initially developed by Dr. Springenschmidt in Germany in the 1970s for 

evaluating thermal stresses in concrete pavements (Springenschmidt et al. 1994).  It comprises of a 6 × 6 

× 49 in. prismatic specimen with dogbone-shaped ends held in two mild-steel cross-heads as shown in 

Figure 3-5(a).  The dogbone-shaped ends have steel teeth to help firmly grip the concrete.  The specimen 

is restrained by two Invar side bars extending along both sides as shown in Figure 3-5(b).  Strain gauges 

are mounted on the Invar bars that measure strains continuously during the test.  The insulated and 

temperature controlled formwork is completely lined with plastic sheeting and is firmly supported by the 

Invar bars.  The plastic sheeting prevents any moisture loss and reduces friction between the form surface 

and the concrete.  The temperature profile simulated was for an 8 × 8 ft column placed in fall conditions.  

The temperature profile development is discussed in Section 3.5.  After a period of 96 hours, if no cracking 

is observed in the concrete, it is cooled at a rate of 0.9˚F/hr until cracking occurs.  The stress response was 
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measured every five minutes with the help of a data acquisition system.  In order to test autogenous stress 

development, the concrete was subjected to isothermal conditions (73˚F) and the stress response recorded. 

 

a) 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: Rigid cracking frame test setup:  a) Schematic of test setup (Mangold 1998) and 

b) Actual equipment used (Meadows 2007) 

 

Fresh concrete is placed in two lifts and consolidated in the formwork using a needle vibrator.  After 

finishing, a plastic sheet is placed on top of the concrete surface and taped to the formwork to prevent any 

moisture loss.  Thus, drying shrinkage effects are not considered in this study.  The formwork is closed from 

the top and connected via hoses to a circulator that circulates a mixture of water and ethylene glycol (50:50 

ratio, by mass) through the formwork.  The formwork contains 0.5 in. diameter copper tubes, which enables 

subjecting the concrete to any target temperature profile.   
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After final set, stresses start to develop due to autogenous and thermal shrinkage.  The Invar bars 

provide restraint to the movement of the concrete, which results in the development of concrete stresses.  

Consequently, the strain gauges on the Invar bars record the strains, which are converted to stresses using 

a computer-aided software program.  Thermocouples are also inserted in the ends and center of the 

specimen to record the concrete temperature. 

The stress observed at the time of cracking is less than the splitting tensile strength measured from 

match-cured concrete cylinders.  This is because of differences in the loading rate, test specimen size, and 

type of loading of the concrete specimen (Riding et al. 2014).  The rate of loading is lower in the case of 

the RCF and a lower rate of loading produces lower apparent strengths (Neville 1995).  The splitting tensile 

strength specimens were loaded to failure in less than five minutes, whereas the duration of the RCF tests 

cover a period of approximately 4 to 6 days (Meadows 2007; Byard 2011).  The tensile stresses are spread 

over a larger area (6 × 6 × 49 in.) in the RCF than in the cylinders (12 × 6 in.), hence there is a higher 

probability of finding flaws in the larger specimen, which makes it more susceptible to fail at a lower apparent 

strength (also known as size effects).  In addition, the concrete cylinders undergo a splitting tension test, 

which is an indirect tensile strength test, whereas the concrete in the RCF is subjected to direct tension.  

The ratio of cracking frame stress at failure to the splitting tensile strength at the same time is generally 

between 40 and 80 percent (Riding et al. 2014). 

 

3.4.4 Unrestrained Free Shrinkage 

Free-shrinkage strain refers to the unrestrained uniaxial strain of the concrete.  A free-shrinkage frame 

(FSF) was initially designed by Bjøntegaard (1999) in Norway to study autogenous shrinkage strains in 

concrete.  A similar frame developed at Auburn University was used in this project and is shown in Figure 

3-6(c). 

The FSF used has dimensions of 6×6×24 in. and comprises of temperature-control formwork with 

two movable steel plates at its sides, with the whole setup supported on an Invar frame.  The formwork has 

0.5 in. copper tubes contained inside and is sealed to prevent any moisture loss.  Two small holes on the 

top of the lid are present, which allow for temperature readings with the aid of thermocouples.  The movable 

steel plates have openings at their center, which allow for the insertion of an Invar rod at each end.  One 

end of each Invar rod remains embedded in the concrete, while the other end is connected to a linear 

variable differential transformer (LVDT), which measures the expansion and contraction of the concrete.  

The formwork is connected via hoses to a circulator, which allows for the system to cure the concrete 

specimen to any desirable temperature profile.  The formwork is lined with two layers of plastic sheeting, 

which prevents any adhesion between the frame and the concrete.  A layer of oil lubrication separates the 

two plastic sheets, which allows for reduced friction and free movement of concrete.  Fresh concrete is 

placed in the formwork, consolidated, and is sealed from the top with plastic to prevent any drying from 

taking place.  Therefore, the effect of drying shrinkage is not considered in this test.   
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c) 

 

Figure 3-6: Free-shrinkage frame setup: a) Plan view schematic of test equipment, 

b) Section view schematic (Rao 2008), and c) Actual equipment used (Byard 2011) 
 

The movable steel plates initially support the concrete ends; however, following initial set, the plates 

are moved back, which allows the concrete to move freely.  Figures 3-6(a) and 3-6(b) indicate the position 
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of the movable steel plates before and after initial set, respectively.  Initial set is determined from penetration 

resistance as per ASTM C403 (2014), as discussed in Section 3.4.7.  The unrestrained free shrinkage was 

recorded for all the concrete mixtures for a duration of 5 to 7 days.  The temperature profile was match-

cured to that of the RCF. 

 
3.4.5 Concrete Mechanical Properties 

The concrete mechanical properties were determined at 0.5, 1, 2, 3, 7, and 28 days by performing 

compressive, splitting tensile, and modulus of elasticity as per ASTM C39 (2014), ASTM C496 (2014), and 

ASTM C469 (2014), respectively. 

A match-curing system was used to evaluate the mechanical properties and is shown in Figure 3-

7.  It comprises of a wooden box that can hold 24 6×12 in. cylinders, and is connected via hoses to a 

temperature control circulator.  A mixture of water and ethylene glycol is circulated through a series of 

copper tubes running around each cylinder in the box, which allows the concrete cylinders to be 

simultaneously match-cured to the specimens in the RCF and FSF.   

 

 

Figure 3-7: Cylinder match-curing system: a) Wooden box containing cylinders and 

b) A unit with two cylinders (Rao 2008) 

 

3.4.6 Coefficient of Thermal Expansion 

The coefficient of thermal expansion (CTE) of concrete is tested as per AASHTO T336 (2009).  A 6×7 in. 

concrete cylinder is placed in a frame, shown in Figure 3-8, that is submerged in water.  Mounted on the 

frame is a spring-loaded LVDT which is placed in contact with the concrete cylinder.  The temperature of 

the water bath is varied between 50˚F to 122˚F, and the ensuing change in length of the concrete cylinder 

is measured.  From the resulting displacements over the temperature changes, the coefficient of thermal 

expansion of the concrete can be calculated. 

 

[

a) b) 
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Figure 3-8: Schematic of the thermal expansion test setup (AASHTO T 336 2009) 

 

For every concrete mixture, two 6 × 7 in. cylinders were cast and cured for a period of 28 days.  

Following which, they were tested in the CTE apparatus shown in Figure 3-9 as per AASHTO T336 (2009).  

Certain modifications were made to improve the repeatability of this test (Byard 2011).  Specifically, ceramic 

inserts were added between the concrete specimen and the LVDT to mitigate any effects that temperature 

changes might have on the LVDT readings.  Additionally, a small ceramic disk was used under the tip of 

the LVDT, along with a ceramic collar which was used to mount the LVDT onto the frame.  The use of the 

ceramic collar was to ensure that temperature transfer was prevented from interfering with the LVDT 

through the mounting crossbar.  Since the water levels in the temperature-controlled bath would fluctuate 

from time to time, an Invar spacer was employed and was placed on top of the concrete specimen.  This 

provided additional height and ensured that the water fluctuations did not interfere with the LVDT readings.  

The ceramic collar, disks, and other Invar spacer were present during the calibration procedure involving 

standard 6×7 in. steel specimens.  Thus, the presence of these additions was accounted for in the 

calibration procedure and computations of the CTE.   

 

 

Support Buttons  

Spring-loaded LVDT 

4-in. Dia. Concrete Core Frame 
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Figure 3-9: Modified AASHTO T336 setup used for CTE testing (Byard 2011) 

 

3.4.7 Setting Test 

The time of initial set is the time at which stresses in the concrete are discernable and can be recorded 

(Neville 2011).  Initial set of concrete is established when the concrete reaches a penetration resistance of 

500 psi, and final set is achieved when the penetration resistance reaches 4000 psi (ASTM C403 2014).  

To determine the time of initial set, each concrete mixture was sieved through a No. 4 sieve and the mortar 

was cast in a 6 × 8 in. cylindrical container and match-cured to the temperature in the RCF and FSF tests.  

Penetration resistance tests were performed on the specimens as per ASTM C403 (2014).   

 

3.4.8 Other Fresh Quality Control Tests 

The concrete was mixed as per ASTM C192 (2014) under standard laboratory conditions.  The slump, 

temperature, and the density were measured as per ASTM C143 (2014), ASTM C1064 (2014), and ASTM 

C138 (2014), respectively for every batch of concrete.  The total air content was determined using the 

pressure method as per ASTM C231 (2014) for normalweight concretes.  The volumetric method as per 

ASTM C173 (2014) was used to determine the total air content for concretes incorporating lightweight 

aggregates.   

 

3.5 CONCRETE TEMPERATURE MODELING 

The temperature modeling for the concrete mixtures was performed with the help of a software program 

called ConcreteWorks.  It was developed at UT Austin and is utilized by TXDOT and some other states 

(Poole et al. 2006).  ConcreteWorks can model the temperature history of a mass concrete element 

considering the geometry of the elements, type of aggregates used, chemical composition of cementitious 
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materials, concrete mixture proportions, placement temperature, weather conditions (including humidity, 

solar radiations, and wind speeds), and type of formwork employed.   

Initially semi-adiabatic calorimetry was performed on the concrete mixtures and the hydration 

parameters were determined (Schindler and Folliard 2005).  Preliminary investigations were performed with 

ConcreteWorks to identify the appropriate mass concrete element size for temperature modeling.  The 

ALWC with a w/cm of 0.38, 30 percent Class F fly ash (substitution by mass), and TypeⅠcement were 

chosen for preliminary modeling purposes, since it was expected that this mixture would experience the 

highest maximum concrete temperature (Byard and Schindler 2010).  Three different mass concrete 

element sizes─4×4 ft, 8×8 ft, and 12×12 ft─were chosen for modeling purposes.  These sizes are 

representative mass concrete element sizes for many transportation substructure components.  The inputs 

used for modeling the temperature profile in ConcreteWorks were the hydration parameters along with the 

mixture proportion values and other factors including the placement date, type of formwork, etc.  The results 

from ConcreteWorks include the maximum core and edge temperatures and are presented for the three 

mass concrete element sizes in Figures 3-10 and 3-11, respectively. 

From Figures 3-10 and 3-11, it can be observed that the maximum core and edge temperatures for 

ALWC 0.38 are the highest for a 12×12 ft column.  However, the differences between the maximum 

temperatures for 8×8 ft and 12×12 ft size column is minimal.  Also, the maximum temperatures are below 

the critical DEF limit of 185°F (ACI 301 2016).  Therefore, a 8×8 ft size column was chosen.  From previous 

research (Tankasala et al. 2017), it was determined that thermal cracking is expected at the edge of cross-

section when compared to the core, especially at early ages.  All constituent materials were kept at  room 

temperature (73˚F) prior to mixing.  In order to ensure that all RCF tests are completed within a reasonable 

time frame, a duration of seven days was selected for temperature modeling and early-age concrete testing. 

In this study, ConcreteWorks was used to model the edge temperature profile for a duration of four 

days (96 hours) for of 8 × 8 ft concrete column placed under fall placement conditions in Montgomery, 

Alabama on construction date of September 15th.  The temperature profiles were modeled for both groups 

of w/cm concretes.  After a period of four days (96 hours) if cracking has not occurred, the concrete was 

artificially cooled at a rate of 0.9˚F/hr until the onset of cracking.  This approach is similar to the practice 

adopted by Breitenbucher and Mangold (1994) and Byard and Schindler (2010), except the cooling rate 

was halved.  This gradual cooling rate ensured all the concrete specimens would fail within one week. 
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Figure 3-10: Concrete core temperature for various cross-section sizes (ALWC 0.38) 
 

 
Figure 3-11: Concrete edge temperature for various cross-section sizes (ALWC 0.38) 

 

 

3.6 OTHER RAW CONCRETE MATERIALS 

 

3.6.1 Portland Cement 

TypeⅠcement was used in all concretes made in this study.  The chemical composition and fineness of 

this cement are as shown in Table 3-6. 

 

Table 3-6: Portland cement chemical composition and fineness 

C3S C2S C3A C4AF Free CaO SO3 MgO Blaine Fineness  

60.3 % 18.2 % 5.4 % 11.3 % 0.9 % 2.6 % 1.3 % 351 (m2/kg) 
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3.6.2 Fly Ash 

The fly ash used for this study was Class F fly ash and was obtained from Boral Material Technologies.  

The chemical composition of this fly ash is listed in Table 3-7. 

 
Table 3-7: Fly ash chemical composition 

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O Total Alkalis 

55.7 % 27.9% 6.5 % 1.2 % 0.7 % 0.1 % 2.5% 0.3 % 2.0% 

 

3.6.3 Normalweight Coarse and Fine Aggregates 

The coarse aggregates used in this study were ASTM C33 (2014) No. 67 siliceous river gravel.  The fine 

aggregate used was siliceous river sand.  Both the aggregates were obtained from a concrete plant located 

in Auburn, Alabama which had stockpiles of the above aggregates.  Sieve analysis was performed on 

sampled aggregates according to ASTM C136 (2014) and their gradations are shown in Appendix A.  The 

specific gravity and absorption capacities of the aggregates were tested in accordance with ASTM C127 

(2014) and ASTM C128 (2014), respectively.  The properties of the normalweight aggregates are shown in 

Table 3-8. 

 
Table 3-8: Properties of normalweight coarse and fine aggregate 

Property Coarse Aggregate Fine Aggregate 

Absorption Capacity (%) 0.16 0.34 

Specific gravity 2.63 2.64 

Fineness modulus - 3.00 

 

3.6.4 Chemical Admixtures 

Chemical admixtures were used to obtain the desired slump and total air content for each concrete mixture.  

All chemical admixtures were supplied by the BASF Corporation.  The dosages of all admixtures are 

provided in Tables 3-2 and 3-3. 

MB AE90 was used as the air-entraining admixture (AEA) and it meets all the requirements of 

ASTM C260 (2014).  The AEA dosage for each concrete mixture was determined with trial batches until 

the desired total air content was achieved. 

The water-reducing admixture used was Pozzolith 322 N.  A mid-range water-reducing admixture, 

(Polyheed 1025) was also used to achieve the desired slump for lower w/cm mixtures.  Both these 

admixtures met all the requirements of ASTM C494 (2014).  The dosages of the water-reducing admixtures 

were also determined using trial batches for each concrete mixture. 

Due to the harsher nature and workability issues encountered for the ISLWC and ALWC, a 

rheology-controlling admixture (Navitas 33) was used.  The rheology-controlling admixture helped to reduce 

the harshness of both the ISLWC and the ALWC and improve their workability.  The rheology-controlling 

admixture met the requirements of ASTM C494 (2014) as a Type S Admixture.  
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Chapter 4 
 

Experimental Results 

 

The results from the experimental work performed for this study are presented in this chapter.  Discussions 

and analysis of results are presented in Chapter 5.  The results contain herein include: 

 Combined mixture gradations,  

 Fresh concrete properties, 

 Thermal properties,  

 Concrete temperature histories,  

 Restrained stress development, 

 Unrestrained strain development, and 

 Time-dependent development of mechanical properties. 

 

4.1  CONCRETES WITH W/CM = 0.45 

 

4.1.1 Combined Mixture Gradations  

Five concrete mixtures with a w/cm of 0.45 and with four of them containing lightweight aggregates were 

produced and tested.  The mixture proportions for these five concretes are presented in Table 3-2.  In order 

to assess the impact of using lightweight aggregates on the fresh concrete properties, the combined 

gradations of these concretes are plotted on a 0.45-power curve and their workability factor determined.  

The 0.45-power curve in Figure 4-1 presents the particle packing of the combined aggregate gradation 

(Young, Mindess and Darwin 2002).  The workability factors (Shilstone 1990) for all 0.45 w/cm concretes 

are also presented in Figure 4-2. 
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Figure 4-1: Combined gradation of all 0.45 w/cm concretes on the 0.45 power curve 
 
 

 

Figure 4-2: Workability factor versus coarseness factor for all 0.45 w/cm concretes 
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4.1.2 Fresh Concrete Properties 

Trial batches were performed for each mixture until the desired slump and total air content were achieved.  

Following this, two batches of concrete were produced, with one batch being tested for mechanical 

properties of concrete and the other batch for RCF and FSF testing.  The fresh properties of each mixture 

and batch are presented in Table 4-1.  The “∆ density” column in Table 4-1 is the difference between the 

measured and designed densities after performing the corrections for measured total air content.  A positive 

sign indicates that the measured density was higher than the calculated density and vice versa.  The 

calculated equilibrium densities in accordance with ASTM C567 (2014) are also shown in Table 4-1.  Only 

the slump of ISLWC 0.45 (Batch 1) was 0.5 in. below the target slump range of 3 to 5 in.; however, the 

workability of this mixture was sufficient to allow it to be effectively consolidated. 

 

Table 4-1: Measured fresh concrete properties for all 0.45 w/cm concretes 

Concrete 
Mixture  

Batch 
No. 

Fresh Concrete Test Results Calculated 

Slump 
(in.) 

Temp.  
(°F) 

Total Air 
(%) 

Density 
(lb/ft3) 

∆ Density 
(lb/ft3) 

REF 0.45 
1 3.5 74 5.0 141.5 0.5 

2 4.5 73 5.5 141.9 0.9 

ICC 0.45 
1 4.0 73 5.5 140.8 -0.7 

2 3.5 75 5.0 139.6 -1.0 

ISLWC 0.45 
1 2.5 73 4.0 120.6 0.1 

2 3.0 75 4.5 120.1 -0.4 

SLWC 0.45 
1 3.5 74 4.5 114.1 0.9 

2 3.5 73 5.0 114.2 1.0 

ALWC 0.45 
1 5.0 71 5.0 101.5 -0.6 

2 4.5 72 5.5 101.3 -0.8 

 

 

4.1.3 Thermal Properties 

The calculated equilibrium density, coefficient of thermal expansion, and thermal diffusivity are summarized 

in Table 4-2. 

 

Table 4-2: Miscellaneous properties of all 0.45 w/cm concretes 

Property 
REF  
0.45 

ICC  
0.45 

ISLWC 
0.45 

SLWC  
0.45 

ALWC  
0.45 

Calculated Equilibrium Density (lb/ft3) 139.0 135.5 115.4 110.6 95.6 

Coefficient of Thermal Expansion (με/°F) 5.8 5.7 5.2 5.1 4.1 

Thermal Diffusivity (ft2/hr) 0.039 0.037 0.035 0.022 0.019 
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4.1.4 Peak Temperatures 

The time-dependent development of temperatures at the core of an 8×8 ft column calculated from 

ConcreteWorks for the concretes with a w/cm of 0.45 are presented in Figure 4-3.  The edge temperatures 

computed using ConcreteWorks were simulated in the rigid cracking frame, as mentioned in Section 3.5. 

 

 

Figure 4-3: Temperature development in a 8×8 ft column for all 0.45 w/cm concretes  

 

4.1.5 Restrained Stress Development 

The restrained stress development measured with the RCF for all five concretes with w/cm of 0.45 and their 

curing temperatures are shown in Figures 4-4 and 4-5.  The stresses are shown until the time of cracking, 

which is indicated by a sudden drop in stress.  Isothermal stress development was not measured for any 

of the concretes with w/cm of 0.45, because their autogenous shrinkage is expected to be negligible (Weiss 

and Bentz 2010; Lura et al. 2003). 

 

4.1.6 Unrestrained Strain Development 

The unrestrained strain measurement measured with the FSF for all concrete specimens with a w/cm of 

0.45 are shown in Figure 4-6.  The concrete specimens were match-cured using the modeled temperature 

profiles of the RCF.   
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Figure 4-4: Concrete temperature profile for all 0.45 w/cm concretes 

Figure 4-5: Restrained stress development for all 0.45 w/cm concretes 
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Figure 4-6: Unrestrained strain development for all 0.45 w/cm concretes 

 

4.1.7 Summary of Rigid Cracking Frame Test Results 

The maximum RCF temperature, time of cracking in the RCF, and the stresses at cracking are shown in 

Table 4-3 for all the concretes with w/cm of 0.45. 

 

Table 4-3: Summary of RCF results for concrete with w/cm of 0.45 

Item 
w/cm = 0.45 

REF  
0.45 

ICC  
0.45 

ISLWC  
0.45 

SLWC  
0.45 

ALWC 
 0.45 

Maximum RCF temperatures (°F) 130 135 135 136 139 

Time of cracking (hrs) 110 123 128 139 137 

Stress at cracking (psi) 290 290 200 290 200 

 

 

4.1.8 Time-Dependent Development of Mechanical Properties 

The time-dependent development of compressive strength, splitting tensile strength, and modulus of 

elasticity were tested for each concrete mixture.  The measured values were averaged for two cylinders 

and are presented in Appendix B.  Twenty-four cylinders were match-cured along with the RCF and FSF 

and were tested at varying ages.  A regression analysis was performed according to ASTM C1074 (2014), 

which recommends the use of an exponential function.  Best-fit curves were determined for the measured 

values and are plotted in Figures 4-7 to 4-9.   

 

Cooling at 
0.9°F/hr 
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Figure 4-7: Compressive strength development for all 0.45 w/cm concretes 

 

 

 

 

 

 

   

 

 

 

 

 

 

Figure 4-8: Splitting tensile strength development for all 0.45 w/cm concretes 
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Figure 4-9: Modulus of elasticity development for all 0.45 w/cm concretes 
 
 

 

4.2 CONCRETES WITH W/CM = 0.38 

 

4.2.1 Combined Mixture Gradations  

Five concrete mixtures with a w/cm of 0.38 and with four of them containing lightweight aggregates were 

produced and tested for fall conditions.  The mixture proportions are, for these fine concretes are presented 

in Table 3-3.  In order to assess the impact of using lightweight aggregates on the fresh concrete properties, 

the combined gradations of the concrete are plotted on a 0.45-power curve and their workability factor 

determined.  The 0.45-power curve presented in Figure 4-10 presents the particle packing of the blended 

aggregate gradation (Young, Mindess and Darwin 2002).  The workability factors (Shilstone 1990) for all 

0.38 w/cm concretes are also presented in Figure 4-11. 
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Figure 4-10: Combined gradation of all 0.38 w/cm concretes on the 0.45 power curve 

 

 

Figure 4-11: Workability factor versus coarseness factor for all 0.38 w/cm concretes 
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4.2.2 Fresh Concrete Properties 

Trial batches were performed for each mixture until the desired slump and total air content were achieved.  

Following this, two batches of concrete were produced, with one batch being tested for mechanical 

properties of concrete and the other batch for RCF and FSF testing.  The fresh properties of each mixture 

and batch are presented in Table 4-4.  The “∆ density” column in Table 4-4 is the difference between the 

measured and designed densities after performing the corrections for measured total air content.  A positive 

sign indicates that the measured density was higher than the calculated density and vice versa.  The 

calculated equilibrium densities in accordance to ASTM C567 (2014) are also shown in Table 4-4.  The 

slumps of SLWC 0.38 (Batch 1) and ALWC 0.38 (Batch 1) were 0.5 in.  outside the target slump range of 

3 to 5 in.; however, the workability of these concretes were sufficient to allow them to be effectively 

consolidated without any signs of segregation. 

 

Table 4-4: Measured Fresh properties for all 0.38 w/cm concretes 

Concrete 
Mixture 

Batch 
No. 

Fresh Concrete Test Results Calculated 

Slump 
(in.) 

Temp.  
(°F) 

Total Air 
(%) 

Density 
(lb/ft3) 

∆ Density 
(lb/ft3) 

REF 0.38 
1 4.0 73 5.5 141.6 0.4 

2 3.0 73 5.0 141.9 0.7 

ICC 0.38 
1 3.5 72 4.5 141.2 0.6 

2 3.5 75 5.5 140.1 -0.5 

ISLWC 0.38 
1 3.5 73 4.0 120.8 0.3 

2 4.0 74 4.0 121.2 0.7 

SLWC 0.38 
1 2.5 73 5.5 115.0 1.2 

2 4.0 71 6.0 114.6 0.8 

ALWC 0.38 
1 5.5 74 6.0 101.3 -0.8 

2 4.0 73 5.5 101.8 -0.3 

 

4.2.3 Thermal Properties 

The calculated equilibrium density, coefficient of thermal expansion, and thermal diffusivity are summarized 

in Table 4-5. 

 
Table 4-5: Miscellaneous properties of all 0.38 w/cm concretes 

 

Property 
REF 
0.38 

ICC 
0.38 

ISLWC 
0.38 

SLWC 
0.38 

ALWC 
0.38 

Calculated Equilibrium Density (lb/ft3) 139.2 135.5 115.8 110.2 95.2 

Coefficient of Thermal Expansion (με/°F) 6.1 5.9 5.3 5.3 4.1 

Thermal Diffusivity (ft2/hr) 0.039 0.038 0.037 0.021 0.014 
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4.2.4  Peak Temperatures 

The time-dependent development of temperatures at the core of an 8×8 ft column calculated from 

ConcreteWorks for the concretes with a w/cm of 0.38 are presented in Figure 4-12.  The edge temperatures 

computed using ConcreteWorks were simulated in the rigid cracking frame, as mentioned in Section 3.5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12: Temperature development in a 8×8 ft column for all 0.38 w/cm concretes  

 

4.2.5 Restrained Stress Development 

The restrained stress development measured with the RCF for all five concretes with w/cm of 0.38 and their 

curing temperature profiles are shown in Figures 4-13 and 4-14.  The stresses are shown until the time of 

cracking, which is indicated by a sudden drop in stress.   
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Figure 4-13: Concrete temperature profile for all 0.38 w/cm concretes 

 

 

Figure 4-14: Restrained stress development for all 0.38 w/cm concretes 

 

4.2.6 Unrestrained Strain Development 

The unrestrained strain measurement measured with the FSF for all the concrete specimens with w/cm of 

0.38 are shown in Figure 4-15.  The concrete specimens were match-cured using the modeled temperature 

profiles of the RCF.   
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Figure 4-15: Unrestrained strain development for all 0.38 w/cm concretes 

 

 

4.2.7 Isothermal Stress Development 

The isothermal stress development measured with the RCF for all five low w/cm concretes are shown in 

Figure 4-16.  The isothermal stresses refer to the concrete stresses when the specimen is subjected to a 

uniform temperature of 73°F, so in this setup these stresses only develop due to autogenous shrinkage. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cooling at 
0.9°F/hr 



 

52 

 

 
Figure 4-16: Isothermal stress development for all 0.38 w/cm concretes 

 
 

4.2.8 Summary of Rigid Cracking Frame Test Results 

The maximum RCF temperature, time of cracking in the RCF, and the stress at cracking are shown in Table 

4-6 for all concrete with w/cm of 0.38.   

 

Table 4-6: Summary of RCF results for concrete with w/cm of 0.38 

Item 
w/cm = 0.38 

REF 
0.38 

ICC  
0.38 

ISLWC  
0.38 

SLWC  
0.38 

ALWC  
0.38 

Maximum RCF temperatures (°F) 136 140 141 142 146 

Time of cracking (hrs) 99 123 138 146 142 

Stress at cracking (psi) 260 345 190 355 205 

Maximum isothermal tensile stress (psi) 60 0 0 5 0 

 

 

4.2.9 Time-Dependent Development of Mechanical Properties 

The time-dependent development of compressive strength, splitting tensile strength, and modulus of 

elasticity were tested for each concrete mixture.  Twenty-four cylinders were match-cured along with the 

RCF and FSF were tested at varying ages.  The measured values were averaged for two cylinders and are 

presented in Appendix B.  A regression analysis was performed as per ASTM C1074 (2014), which 

recommends the use of an exponential function.  Best-fit curves were determined for the measured values 

and are plotted in Figures 4-17 to 4-19. 
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Figure 4-17: Compressive strength development for all 0.38 w/cm concretes 
 

Figure 4-18: Splitting tensile strength development for all 0.38 w/cm concretes 
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Figure 4-19: Modulus of elasticity development for all 0.38 w/cm concretes 
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Chapter 5 
 

Discussion of Results 

 

A discussion of the collected results is presented in this chapter.  The change in concrete properties due to 

the use of lightweight aggregates is assessed in Section 5.1.  In Section 5.2, the effect of internal curing on 

autogenous stress development is covered.  Next, the effects of lightweight aggregates on early-age 

concrete stresses are evaluated in Section 5.3.  The cracking tendency, time to cracking, and peak 

hydration temperatures for all concretes are also compared and the reason for the observed behavior is 

discussed.  Finally, the modulus of elasticity and splitting tensile strength results are compared to 

predictions from various expressions at the end of this chapter. 

 

5.1  EFFECT OF LIGHTWEIGHT AGGREGATE ON CONCRETE PROPERTIES 

 

5.1.1 Compressive Strength 

Compressive strength developments for all concretes are presented in Figures 4-7 and 4-17.  The 28-day 

design compressive strength for the reference concrete was 4,000 psi, and the experimental results indicate 

that the compressive strengths exceeded the design strength.  When considering the with-in test variability, 

the compressive strength development for the reference, IC, and SLW concretes are similar for both groups 

of w/cm concretes.  Similarly, ALW and ISLW concretes had approximately 10 % to 15 % lower compressive 

strengths compared to the reference concretes for both groups of w/cm concretes.  This is most likely due 

to the use of large amount of fine LWA in both the ISLW and ALW concretes.  It was unexpected that the 

ISLW concrete had a strength much lower than the SLW concrete; however, the use of high volume of fine 

LWA could explain this result.  When comparing the strengths achieved in Figures 4-7 and 4-17, it can be 

seen that both ISLW and ALW concretes are capable of higher strengths, if low w/cm concrete mixtures 

are used.   

 

5.1.2 Splitting Tensile Strength 

The splitting tensile strength developments for all concretes are presented in Figures 4-8 and 4-18.  When 

considering the with-in test variability, the splitting tensile strength development for the reference, IC, and 

SLW concretes are similar for both groups of w/cm concretes.  Whereas the ISLW and ALW concretes had 

approximately 20 % to 30 % lower splitting tensile strengths, when compared to the reference concretes 

for both groups of w/cm concretes.  The most likely reasons for this result could be due to the higher 

proportion of fine LWA, poor particle packing of the ALW concretes, and the low coarseness factor of the 

ISLW concretes (Shilstone and Shilstone 1989) when compared to the reference concrete as shown in 

Figure 4-2 and 4-11. 
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5.1.3 Modulus of Elasticity 

The modulus of elasticity development results for all concretes are presented in Figures 4-9 and 4-19.  

When considering the with-in test variability, the modulus of elasticity development for the reference and 

IC concretes are similar for both groups of w/cm concretes.  The average modulus of elasticity values are 

lower by 12 %, 33 %, and 33 % for SLW, ISLW, and ALW concretes, respectively, when compared to the 

reference concretes for both groups of w/cm concretes.  The primary factors contributing to this result are 

the lower stiffness of LWA and the reduced density of LWA concretes when compared to normalweight 

concretes.  An unexpected result is the reduced modulus of elasticity of the ISLW concrete when compared 

to SLW concrete.  The SLW concrete has a slightly lower density (approximately 6 lb/ft3) than ISLW 

concrete, but has a higher modulus of elasticity in comparison.  A possible reason could be due to the 

much-reduced compressive strength of both ISLW concretes, as discussed in Section 5.1.1.  Based on 

either Equation 2-7 or 2-8, a large decrease in strength will lead to a large decrease in modulus of elasticity.  

However, this large decrease in modulus of elasticity may be beneficial to reduce early-age concrete 

stresses.   

 

5.1.4 Coefficient of Thermal Expansion 

The coefficient of thermal expansion (CTE) values for all concretes are presented in Tables 4-2 and 4-5.  

As shown in Figure 5-1, the CTE values for both the w/cm concretes indicate that the concretes with an 

increasing amount of LWAs exhibit reduced CTE values, with an average CTE reduction of 5 % for IC, 10 

% for ISLW, 10 % for SLW, and 30 % for ALW concretes when compared to the two reference concretes.  

The reduction in concrete CTE of concrete containing LWA is attributed to the lower CTE of LWA (Neville 

2011).  In accordance with Equation 2-1, a reduction in concrete CTE will result in a decrease in concrete 

thermal stress, which will lead to an improvement in resistance to thermal cracking.   

 

5.1.5 Thermal Diffusivity 

The thermal diffusivity for all the concretes are summarized in Tables 4-2 and 4-5.  As shown in Figure 5-

2, the thermal diffusivity values for both the w/cm concretes indicate that the concretes with increasing 

amount of LWAs exhibit reduced thermal diffusivity values, with an average thermal diffusivity reduction of 

5 % for IC, 10 % for ISLW, 30 % for SLW, and 50 % for ALW concretes when compared to the two reference 

concretes.  The lower diffusivity for concrete containing lightweight aggregates is due to its lower thermal 

conductivity and a lower density.  The lower thermal diffusivity indicates that lightweight aggregate 

concretes will dissipate heat more slowly, which will lead to higher peak temperatures in mass concrete 

applications when compared to normalweight concrete. 
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Figure 5-1: Measured CTE values for all concretes 

 

 

Figure 5-2: Measured thermal diffusivity values for all concretes 

 

5.1.6 Peak Temperature 

The development of peak temperatures at the core of an 8 × 8 ft cross-sectional mass concrete column are 

presented in Figures 4-3 and 4-12.  These concrete temperatures were determined by using the 

ConcreteWorks software with the measured semi-adiabatic calorimeter and thermal diffusivity values for all 
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concretes.  As the w/cm of the concrete decreases, the peak concrete temperatures increase, which is due 

to the presence of more cementitious material in low w/cm concretes (Schindler and Folliard 2005). 

It can be observed that the peak concrete temperatures are the highest for the ALW concretes, 

followed by the SLW and ISLW concretes that are higher than the peak temperatures of the IC and 

reference concretes.  The reference concrete has the lowest maximum concrete temperature for all the 

concretes followed by the IC concrete.  The major reason can be attributed to the systematically lower 

thermal diffusivity observed in these lightweight aggregate concretes as compared to the normalweight 

concrete, as shown in Figure 5-2.  The decrease in thermal diffusivity tends to have an insulating effect on 

the structure leading to a higher buildup of peak temperatures in concrete containing lightweight aggregates 

(Maggenti 2007; Byard and Schindler 2010).  Another reason is due to the higher degree of hydration in 

lightweight aggregate concretes, due to internal curing provided by the pre-wetted LWAs in the concrete 

(Bentz and Weiss 2011).  Since the maximum in-place concrete temperatures increased as more LWAs 

were used in the mixture, care should be taken when using LWA concrete in mass concrete to make sure 

not to exceed the in-place concrete temperature threshold for DEF. 

 

5.2 EFFECT OF INTERNAL CURING ON AUTOGENOUS STRESS DEVELOPMENT 

The internal curing water provided by lightweight aggregates for each concrete type is presented in Table 

3-4.  The availability of internal curing water is the highest in the ALW concrete, followed by SLW, ISLW, 

and IC concretes, because concrete containing higher proportion of the same LWA contains more internal 

curing water.  The autogenous shrinkage stress development for all 0.38 w/cm concretes is presented in 

Figure 4-16.  The autogenous shrinkage stresses are greatly reduced in all concretes containing LWA when 

compared to the reference concrete.  The stress due to autogenous shrinkage is for all practical purposes 

zero in all concretes incorporating LWA.  This decrease in autogenous shrinkage stresses has been 

documented in several research studies (Byard and Schindler 2010; Bentz and Weiss 2011; RILEM TC 

196 2007).  The internal curing water acts as internal water reservoirs, thus increasing the internal relative 

humidity inside the concrete, and resulting in no autogenous shrinkage related stresses (RILEM TC 196 

2007).  This reduction or elimination of autogenous shrinkage related stresses point out that enough internal 

curing water is available to mitigate the effects of autogenous shrinkage. 

It can be seen in Figure 4-5 and 4-14 that when compared to the reference concrete, the use of 

lightweight aggregates delays the occurrence of cracking in all concretes incorporating LWA.  The lower 

w/cm reference concrete cracks at an earlier time when compared to the higher w/cm reference concrete.  

Although the 0.38 w/cm reference concrete has an increased splitting tensile strength, the earlier time to 

cracking in the 0.38 w/cm reference concrete is partly due to its higher modulus of elasticity and the 

contribution of autogenous shrinkage stresses which becomes more prominent at lower w/cm.  The use of 

LWA in concrete with low w/cm will thus be more beneficial, because this is when the autogenous shrinkage 

will be at its highest, and the LWA will help to lower the modulus of elasticity of the low w/cm concrete. 

 



 

59 

5.3 EVALUATION OF THE BEHAVIOR OF VARIOUS TYPES OF LIGHTWEIGHT AGGREGATE 
CONCRETES 

The early-age behavior of the concretes incorporating lightweight aggregates are compared with the 

behavior of the two reference concretes in this section. 

 

5.3.1 Behavior of Internally Cured Concretes 

The concrete temperature profiles and restrained stress development for the internally cured concretes for 

both w/cm concretes are compared to the response of the two reference concretes in Figures 5-3 and 5-4.  

For comparison, the modulus of elasticity and splitting tensile strength development of all IC concretes and 

reference concretes are plotted in Figures 5-5 and 5-6.  The concrete temperatures of the IC concretes are 

higher than their reference concrete counterparts.  This is due to the increased availability of internal curing 

water and the reduced thermal diffusivity of the IC concretes. 

The 0.45 w/cm IC concrete exhibit an increase in time to cracking, when compared to its reference 

concrete.  This is mostly attributed to the reduced coefficient of thermal expansion observed in the 0.45 

w/cm IC concrete, when compared its reference concrete, as discussed in Section 5.1. 

For the low w/cm concrete mixture, a 30 % increase in stress at cracking and a 24-hour delay in 

time to cracking are observed in the IC concrete, when compared to the reference concrete.  The 

improvement in cracking behavior of internally cured concretes of 0.38 w/cm is attributed to a combination 

of reduced coefficient of thermal expansion and autogenous shrinkage stress when compared to the 

reference concrete. 
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Figure 5-3: Concrete temperature profile of IC and reference concretes 

 
 

Figure 5-4: Measured restrained stress development of IC and reference concretes 
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Figure 5-5: Measured modulus of elasticity of IC and reference concretes 

 

 

Figure 5-6: Measured splitting tensile strengths of IC and reference concretes 

 

5.3.2 Behavior of Inverse Sand-Lightweight Concretes 

The concrete temperature profiles and restrained stress development for the ISLW concretes for both w/cm 

concretes are compared to the response of the two reference concretes in Figures 5-7 and 5-8.  For 

comparison, the modulus of elasticity and splitting tensile strength development of both ISLW and reference 

concretes are plotted in Figures 5-9 and 5-10.   

 The concrete temperatures of the ISLW concretes are higher than the reference concretes for both 

the w/cm concrete mixtures, due to a higher proportion of lightweight aggregates.  This result is because 

of the decreased thermal diffusivity and increased heat of hydration due to internal curing, which causes 

higher temperatures in the ISLW concretes.   
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 The time of cracking for ISLW concretes is increased by 18 and 39 hours for w/cm = 0.45 and w/cm 

= 0.38, respectively, in comparison to the reference concretes.  Although the ISLW concretes had much 

lower splitting tensile strengths when compared to the reference concretes (as shown in Figure 5-10), it still 

had an improved cracking tendency when compared to the reference concretes.  An average reduction of 

33% in modulus of elasticity for both w/cm concretes (as shown in Figure 5-9), complete elimination of 

autogenous shrinkage related stresses for the 0.38 w/cm ISLW concrete, and a lower coefficient of thermal 

expansion, all combine to delay the time to cracking for ISLW concretes when compared to the reference 

concretes. 

 

 

Figure 5-7: Concrete temperature profile of ISLW and reference concretes 

 

 
Figure 5-8: Measured restrained stress of ISLW and reference concretes 
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Figure 5-9: Measured modulus of elasticity of ISLW and reference concretes  

 

Figure 5-10: Measured splitting tensile strengths of ISLW and reference concretes 

 

5.3.3 Behavior of Sand-Lightweight Concretes  

The concrete temperature profiles and restrained stress development for the SLW concretes for both w/cm 

concretes are compared to the response of the two reference concretes in Figures 5-11 and 5-12.  For 

comparison, the modulus of elasticity and splitting tensile strength development of both SLW and reference 

concretes are plotted in Figures 5-13 and 5-14.   

 The concrete temperatures of the SLW concretes are higher than the reference concretes, due to 

an increased proportion of lightweight aggregates.  This result is because of the decreased thermal 

diffusivity and increased heat of hydration due to internal curing, which causes higher temperatures in the 

SLW concretes.   
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 The time of cracking is increased by 24 hours (w/cm = 0.45) and 48 hours (w/cm =0.38) for the 

SLW concretes in comparison to the reference concretes.  An average reduction of 12% in  modulus of 

elasticity for both the w/cm concrete mixtures, (as shown in Figure 5-13), elimination of autogenous 

shrinkage related stresses for the 0.38 w/cm SLW concretes, and a lower coefficient of thermal expansion, 

all combine to delay the time to cracking for SLW concretes when compared to reference concretes. 

 

  
Figure 5-11: Concrete temperature profile of SLW and reference concretes  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-12: Measured restrained stress development of SLW and reference concretes 
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Figure 5-13: Measured modulus of elasticity of SLW and reference concretes  

 

 
Figure 5-14: Measured splitting tensile strengths of SLW and reference concretes  

 

5.3.4 Behavior of All-Lightweight Concretes  

The concrete temperature profiles and restrained stress development for the ALW concretes for both w/cm 

concretes are compared to the response of reference concretes in Figures 5-15 and 5-16.  For comparison, 

the modulus of elasticity and splitting tensile strength development of both ALW and reference concretes 

are plotted in Figures 5-17 and 5-18.   

 The concrete temperatures of the ALW concrete are higher than the reference concretes by 5% 

and 8%, for w/cm = 0.45 and w/cm = 0.38, respectively, since all the aggregate particles are lightweight 

aggregates.  The reduced thermal diffusivity and increased heat of hydration due to internal curing, which 

causes higher temperatures in ALW concretes.   

 The time of cracking for ALW concretes is delayed by 22 and 43 hours for w/cm = 0.45 and w/cm 

= 0.38, respectively, in comparison to the reference concretes.  Although the ALW concretes had much 
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lower splitting tensile strengths when compared to the reference concretes (as shown in Figure 5-18), they 

still had a much improved cracking tendency when compared to the reference concretes.  An average 

reduction of 33 % in modulus of elasticity for both the w/cm concretes (as shown in Figure 5-17), the 

elimination of autogenous shrinkage related stresses for the 0.38 w/cm ALW concrete, and a lower 

coefficient of thermal expansion, all combine to delay the time to cracking for the ALW concretes when 

compared to reference concretes. 

 

 

Figure 5-15: Concrete temperature profile of ALW and reference concretes 

 

  

 

 

 

 

 

 

 

 

 

Figure 5-16: Measured restrained stress development of ALW and reference concretes 
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Figure 5-17: Measured modulus of elasticity of ALW and reference concretes 

 

 

Figure 5-18: Measured splitting tensile strengths of ALW and reference concretes  
 

 

5.4 EFFECT OF LIGHTWEIGHT AGGREGATE CONCRETES ON EARLY-AGE CONCRETE 
STRESS DEVELOPMENT 

The restrained stress development and concrete temperature profiles for all concretes tested were 

discussed in the previous section.  The maximum concrete temperature, denoted as Tmax, reached in the 

rigid cracking frame for each concrete type is plotted in Figure 5-19(a) versus the approximate equilibrium 

density of each concrete.  Similarly, in Figure 5-19(b), the time of cracking, denoted as tc, for each concrete 

type as tested in the rigid cracking frame is plotted versus the approximate equilibrium density of concrete.  

As can be seen in Figure 5-19(a), ALW concrete has the highest maximum concrete temperature followed 

in order of decreasing maximum concrete temperature by the SLW, ISLW, IC, and reference concretes.  

The addition of LWA to concrete systematically lowers the thermal diffusivity, as shown in Figure 5-2, and 

subsequently increases the maximum concrete temperature.  It can be observed from Figure 5-19 that 
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despite an increase in the maximum concrete temperatures for LWA concretes in comparison to the 

reference concretes, all concretes made with LWA exhibit an improved crack resistance.  The presence of 

LWA in concrete delays the time to cracking with SLWC having tcthe latest time to cracking followed in 

order of decreasing time to cracking by ALW, ISLW, IC, and reference concretes. 

 

 

Figure 5-19: Summary of cracking tendency test results versus concrete density: 

a) Maximum concrete temperature and b) Time to cracking 

 

Increasing the amount of pre-wetted LWA in concrete systematically decreases the density and 

subsequently the modulus of elasticity of the concrete.  The only exception being ISLWC, which had a very 

low modulus of elasticity and this, is attributed to a lower compressive strength observed in both groups of 

ISLW concrete specimens.  In addition, for both groups of concrete, the CTE decreases with an increasing 

proportion of pre-wetted LWA, as shown in Figure 5-1.  Furthermore, autogenous shrinkage related 

stresses are eliminated in the 0.38 w/cm lightweight aggregate concretes, due to internal curing provided 

by the pre-wetted LWAs.  Similar decrease in autogenous shrinkage related stresses have been reported 

by others (Byard and Schindler 2010; Lura et al. 2003).   

It can thus be concluded that although an increasing amount of LWA in concrete will increase the 

maximum concrete temperature, the increasing use of LWA will reduce the modulus of elasticity, reduce 

the coefficient of thermal expansion, and eliminate autogenous shrinkage effects, which all result in an 

overall improvement in resistance to early-age cracking.  As shown in Figure 5-19, sand-lightweight 

a) b)
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concrete provided the best overall resistance to early-age cracking.  The all-lightweight concrete did not 

perform as well as the sand-lightweight concrete, and this is attributed to its reduced splitting tensile 

strength when compared to the sand-lightweight concrete. 

 

5.5 MEASURED MODULUS OF ELASTICITY COMPARED TO ACI 318 and AASHTO LRFD 
ESTIMATES 

Equation 2-7 (ACI 318 2014) and 2-8 (AASHTO LRFD 2016) can be used to estimate the concrete modulus 

of elasticity using a known compressive strength.  The concrete equilibrium density was used to estimate 

the modulus of elasticity for both ACI 318 (2014) and AASHTO LRFD (2016).  The estimated modulus of 

elasticity according to ACI 318 (2014) and AASHTO LRFD (2016) is compared with the measured modulus 

of elasticity at 0.5, 1, 2, 3, 7, and 28 days in Figure 5-20 and 5-21, respectively. 

 

 

Figure 5-20: Measured versus ACI 318 (2014) predicted modulus of elasticity 

 
From Figure 5-20, it can be observed that the ACI 318 (2014) modulus of elasticity formulation 

provides accurate results for the reference, IC, and ISLW concretes, because most of the data points fall 

within the ± 20 % error zone.  However, many of the results for the SLW and ALW concretes fall below the 
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– 20 % error line; therefore, ACI 318 (2014) tends to underestimate the modulus of elasticity for the SLW 

and ALW concretes tested in this project. 

From Figure 5-21, it can be observed that the AASHTO LRFD (2016) modulus of elasticity 

formulation provides accurate results for the reference, IC, and ISLW concretes, because most of the data 

fall within the ± 20 % error zone.  However, many of the results for the SLW and ALW concretes fall below 

the – 20 % error line; therefore, AASHTO LRFD (2016) tends to underestimate the modulus of elasticity for 

the SLW and ALW concretes tested in this project. 

 

 

Figure 5-21: Measured versus AASHTO LRFD (2016) predicted modulus of elasticity 

 

The unbiased estimate of the standard deviation of the absolute error, Sj, can be determined as 

shown in Equation 5-1 (Ayyub and McCuen 2011).  The average unbiased estimate of the standard 

deviation of the absolute error for the modulus of elasticity when using the ACI 318 (2014) and AASHTO 

LRFD (2016) equations is presented in Table 5-1.  It can be seen from the results shown in Table 5-1 that 

the ACI 318 and AASHTO LRFD expressions predict the modulus of elasticity well for high-density 

concretes (i.e.  REF, ICC, and ISLWC), but produce a high Sj for concretes having lower densities (i.e.  

SLW and ALW concretes).  Based on the average Sj values reported in Table 5-1, it can be concluded that 
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the ACI 318 (2014) and AASHTO LRFD (2016) expressions predict the modulus of elasticity with similar 

accuracy.   





n

i
ij n

S 2

1

1
…………………………………..  (Equation 5-1) 

 Where,  

 Sj = unbiased estimate of the standard deviation (units of property), 

 n  = number of data points (unitless), and 

 Δ = absolute error (units of property). 

 
Table 5-1: Unbiased estimate of standard deviation of absolute error for the modulus of elasticity 

estimation models 

Modulus of Elasticity 
Estimation Model 

Sj for Ec Estimate (ksi) 

REF ICC ISLWC SLWC ALWC Average 

ACI 318: Equation 2-7 525 450 205 715 815 545 

AASHTO LRFD: Equation 2-8 310 380 235 805 870 520 

 

5.6 SPLITTING TENSILE STRENGTH BEHAVIOR COMPARED TO ACI ESTIMATES 

 

The ACI 207.2R (2007) and ACI 207.1R (2012) splitting tensile strength equations were used to estimate 

the measured splitting tensile strength from measured compressive strength test results.  The measured 

splitting tensile strengths at various ages are compared to the estimates obtained from the ACI 207.2R 

(2007) and ACI 207.1R (2012) equations in Figures 5-22 and 5-23, respectively. 

From Figure 5-22, it can be observed that ACI 207.2R (2007) provides reasonably accurate 

estimates of the splitting tensile strength for the reference and IC concretes, because most of the data 

points fall within the ± 20 % error zone.  However, many of the results for the ISLW, SLW and ALW 

concretes fall above the + 20 % error line; therefore, ACI 207.2R (2007) tends to overestimate the splitting 

tensile strength for the ISLW, SLW and ALW concretes tested in this project. 

From Figure 5-23 it can be observed that ACI 207.1R (2012) provides reasonably accurate 

estimates of the splitting tensile strength for the reference and IC concretes, because most of the data 

points fall within the ± 20 % error zone.  However, the majority of the results for the ISLW, SLW, and ALW 

concretes fall above the + 20 % error line; therefore, ACI 207.1R (2012) overestimates the splitting tensile 

strength for the ISLW, SLW, and ALW concretes tested in this project. 
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Figure 5-22: Measured versus ACI 207.2R (2007) predicted splitting tensile strength 

 

The unbiased estimate of the standard deviation of absolute error, Sj, for the splitting tensile 

strength when using the ACI 207.2R (2007) and ACI 207.1R (2012) equations is presented in Table 5-2.  It 

can be seen from the results shown in Table 5-2 that both ACI 207.2R (2007) and ACI 207.1R (2012) 

equations provide similar estimates of the splitting tensile strengths of the concretes. 
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Figure 5-23: Measured versus ACI 207.1R (2012) predicted splitting tensile strength 

 

Table 5-2: Unbiased estimate of standard deviation of absolute error for the splitting tensile strength 
estimation models 

Splitting Tensile Strength 
Estimation Model 

Sj for fct Estimate (psi) 

REF ICC ISLWC SLWC ALWC Average 

ACI 207.2R: Equation 2-3 55 80 135 80 110 90 

ACI 207.1R: Equation 2-4 55 80 130 80 105 90 

 

 

5.7 EVALUATION OF MEASURED LIGHTWEIGHT MODIFICATION FACTORS FOR SPLITTING 
TENSILE STRENGTH 

Green and Graybeal (2013) recommended the use of lightweight modification (λ) factor to estimate the 

splitting tensile strength as discussed in Section 2.1.4.2.  This λ-factor can be computed in two ways (Green 

and Graybeal 2013):  

1.   If the splitting tensile strength is known, the λ-factor can be computed using Equation 5-2. 

 =	ߣ
4.7×fct

''

ටfc
''
	൑ 1.0  ……………………… (Equation 5-2) 
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Where, 

λ  = lightweight modification factor, 

fct’’  = splitting tensile strength (ksi), and 

f’’c  = compressive strength (ksi). 

 

2.   If splitting tensile strength is unknown, then the λ-factor can be computed with Equation 5-3. 

0.75 ൑ ߣ ൌ 7.5×wc  
'' ൑ 1.0  ……………………… (Equation 5-3) 

Where, 

w’’c  = concrete equilibrium density (kcf). 

 

The average λ-factors obtained using Equations 5-2 and 5-3 for SLW, ISLW, and ALW concretes 

are presented in Table 5-3.  Since the equilibrium density of the reference and IC concretes are 135 pcf or 

greater, they are considered normalweight concretes and are thus not included in Table 5-3.  It can be 

observed that for SLW and ALW concretes, the λ-factor calculated by using the measured compressive and 

splitting tensile strengths (Equation 5-2) are similar to those obtained by using equilibrium densities 

(Equation 5-3).  However, the λ-factor obtained from Equation 5-3 for ISLW concrete is much higher than 

the value obtained from using the measured compressive and splitting tensile strengths.  This is partly due 

to the unexpected lower compressive and splitting tensile strengths observed in the ISLW concretes.  Based 

on these observations, it can be concluded that the λ-factor calculated by using equilibrium density as 

shown in Equation 5-3, can be used to accurately estimate the splitting tensile strength of the SLW and 

ALW concretes tested in this project. 

 

Table 5-3: Average lightweight modification factor (λ-value) by mixture type 

Calculation Method 
Lightweight Modification Factor 

ISLWC SLWC ALWC 

λ-factor from Equation 5-2 0.65 0.82 0.74 

λ-factor from Equation 5-3 0.90 0.83 0.75 
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Chapter 6 
 

Conclusions and Recommendations 

  

6.1 SUMMARY 

In this study, the effect of using lightweight aggregate on the early-age cracking tendency of mass concrete 

was evaluated.  Two groups of concrete mixtures with a water-to-cementitious materials ratio (w/cm) of 

0.38 and 0.45 were tested.  Each group of concretes contained five mixtures: a reference normalweight 

concrete, internally cured (IC) concrete, inverse sand-lightweight (ISLW) concrete, sand-lightweight (SLW) 

concrete, and all-lightweight (ALW) concrete.  Ten concretes were thus produced under laboratory 

conditions and evaluated in this study.  The IC concrete is similar to normalweight concrete, except that a 

portion of fine aggregates was replaced with lightweight fine aggregates.  The amount of lightweight 

aggregate was determined to ensure that the autogenous shrinkage was eliminated and the equilibrium 

density was greater than 135 pcf, which classifies the IC concrete as normalweight concrete according to 

AASHTO LRFD (2016).  ISLW concrete contained normalweight coarse aggregates and lightweight fine 

aggregates, whereas the SLW concrete contained normalweight fine aggregate and lightweight coarse 

aggregate.  The ALW concrete contained lightweight fine and coarse aggregates.  In order to be 

representative of mass concrete, Class F fly ash at a 30% (by mass) cement replacement level was used 

in all mixtures.   

The cracking tendency of the concretes were measured in a rigid cracking frame (RCF), using a 

unique temperature profile to simulate mass concrete placement under fall environmental conditions.  For 

the lower w/cm concrete mixtures, the development of stress due to autogenous shrinkage were recorded 

under isothermal conditions.  A free-shrinkage frame (FSF) was used to assess the unrestrained free 

shrinkage of the concretes.  The time-depended development of mechanical properties was determined by 

performing compressive, splitting tensile, and modulus of elasticity tests at 0.5, 1, 2, 3, 7, and 28 days.  The 

cylinders used to test the time-depended development of mechanical properties were match cured to the 

temperature of the RCF specimens.  Semi-adiabatic calorimetry was used to characterize the release of 

heat of hydration from each mixture.  The thermal diffusivity of each concrete was also tested to characterize 

the impact of lightweight aggregate on the development of concrete temperatures.  The coefficient of 

thermal expansion of the hardened concrete was also assessed with a test setup similar to that required by 

AASHTO T 336 (2009). 
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6.2 CONCLUSIONS 

 
6.2.1 Effect of Using Lightweight Aggregates on Concrete Properties 

From this research, the following conclusions can be made regarding the effects of lightweight aggregate 

on concrete properties: 

1. The compressive strength development for the reference, IC, and SLW concretes were similar.  

However, the compressive strengths of the ALW and ISLW concretes were approximately 10 to 

15 % lower when compared to the reference concretes. 

2. The splitting tensile strength development for the reference, IC, and SLW concretes were similar.  

However, the splitting tensile strengths of the ISLW and ALW concretes were approximately 20 to 

30 % lower when compared to the reference concretes. 

3. Increasing the amount of lightweight aggregate systematically decreased the concrete density, 

thereby also reducing the modulus of elasticity of concrete.  When considering the with-in test 

variability, the modulus of elasticity development for the reference and IC concretes were similar.  

The modulus of elasticity values were lower on average by 12 %, 33 %, and 33 % for SLW, ISLW, 

and ALW concretes, respectively, when compared to the reference concretes. 

4. Increasing the amount of lightweight aggregate in concrete systematically decreased the concrete 

coefficient of thermal expansion (CTE).  The average CTE values were reduced by 5 %, 10 %, 10 

%, and 30 % for IC, ISLW, SLW, and ALW concretes, respectively when compared to the reference 

concretes. 

5. Concretes with increasing proportion of LWAs exhibit lower thermal diffusivity values, with an 

average thermal diffusivity reduction of 5 %, 10 %, 30 %, and 50 % for IC, ISLW, SLW, ALW 

concretes, respectively when compared to the reference concretes. 

6. The ACI 318 (2014) and AASHTO LRFD (2016) modulus of elasticity formulations provide accurate 

estimates for the reference, IC, and ISLW concretes tested in this project.  However, both ACI 318 

(2014) and AASHTO LRFD (2016) tend to underestimate the modulus of elasticity for the SLW and 

ALW concretes tested in this project. 

7. The ACI 207.2R (2007) and ACI 207.1R (2012) splitting tensile strength formulations provide 

reasonably accurate estimates for the reference and IC concretes tested in this project.  However, 

both ACI 207.2R (2007) and ACI 207.1R (2012) tend to overestimate the splitting tensile strength 

for the ISLW, SLW, and ALW concretes tested in this project. 

8. The lightweight modification factor (λ-factor), calculated by using the equilibrium density as 

proposed by Green and Graybeal (2013), can be used to accurately estimate the splitting tensile 

strength of the SLW and ALW concretes tested in this project. 
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6.2.2 Early-Age Concrete Behavior 

From this research, the following conclusions can be made about the effect of using lightweight aggregate 

on the effect of cracking tendency and autogenous shrinkage of concrete: 

1. Concretes containing an increased proportion of LWAs experienced higher concrete temperatures 

when compared to the reference concretes.  ALW concrete had the highest maximum concrete 

temperature followed in order of decreasing maximum concrete temperature by the SLW, ISLW, 

IC, and reference concretes.  This behavior is attributed to the lower thermal diffusivity and 

increased heat of hydration present in concretes containing LWAs.  Care should be taken when 

using LWA concrete in mass concrete to make sure that the threshold for DEF to occur is not 

exceeded. 

2. As the w/cm of the concrete decreased, the peak concrete temperatures increased, which is due 

to the presence of more cementitious material in low w/cm concretes.   

3. The presence of LWA in concrete delayed the time to cracking, with SLW concrete providing the 

best overall resistance to early-age cracking.  The time to cracking for all concretes containing pre-

wetted lightweight aggregates was greater than the time to cracking of the normalweight concretes.   

4. For the concretes with w/cm = 0.38, the presence of pre-wetted lightweight aggregate eliminated 

autogenous shrinkage and its related stresses.  The use of lightweight aggregates in concrete with 

low w/cm is beneficial to control early-age cracking, because it helps to mitigate autogenous 

shrinkage and lower the modulus of elasticity of the higher strength concrete. 

5. Although an increasing amount of LWA in the concrete will increase the maximum concrete 

temperature in mass concrete applications, the increasing use of LWA will reduce the modulus of 

elasticity, reduce the coefficient of thermal expansion, and eliminate autogenous shrinkage effects, 

which all contribute to improve the resistance to early-age cracking. 

 

6.3 RECOMMENDATIONS FOR FUTURE WORK 

The following recommendations are offered for future research: 

1. The compressive strength, splitting tensile strength, and modulus of elasticity results of the ISLW 

concrete were lower in comparison to SLW concrete, despite their densities being reasonably 

similar.  This may be related to the specific fine lightweight aggregates, particle packing, or the 

combined gradation of aggregates used in this project.  However, since this result was unexpected, 

it is recommended to determine how to proportion ISLW and SLW concrete with the same w/cm to 

achieve similar mechanical properties.   

2. Due to the resources available, the thermal properties of the lightweight aggregates were back 

calculated from semi-adiabatic calorimetry and were not directly measured.  When modeling the 

temperature development in mass concrete elements, it is recommended that the thermal 

properties of the concrete be determined using standardized ASTM test methods. 
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3. The effect of lightweight aggregate on drying shrinkage was not evaluated in this study.  Study of 

drying shrinkage will aid in the evaluation of long-term effects of lightweight aggregate on drying 

shrinkage. 

4. The early-age and long-term performance of similar full-scale mass concrete elements constructed 

with normalweight and sand-lightweight concrete should be collected and compared.   
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Appendix A 
 

Aggregate Gradations 

 

Table A-1: Coarse aggregate gradation 

Sieve Size 

Percent Passing 

Normalweight Coarse 
Aggregate 

(Auburn, AL) 

Lightweight Coarse 
Aggregate 

(Norlite, NY) 

1 in. 100.0 100.0 

¾ in. 95.2 97.0 

½ in. 64.3 65.4 

3/8 in. 39.2 22.4 

# 4 1.2 2.9 

# 8 0.1 0.4 

# 16 0.0 0.0 

 

 

 

Table A-2: Fine aggregate gradation 

Sieve Size 

Percent Passing 

Normalweight Fine 
Aggregate 

(Auburn, AL) 

Lightweight Fine 
Aggregate 

(Norlite, NY) 

½ in. 100.0  

3/8 in. 100.0 100.0 

# 4 99.7 100.0 

# 8 90.7 98.8 

# 16 69.4 59.5 

# 30 32.8 38.3 

# 50 5.9 15.6 

# 100 1.5 0.3 

Pan 0.0 0.0 
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Appendix B 
 

Concrete Mechanical Properties 

 

Table B-1: Match-cured compressive strength results for all concretes 

Concrete 
Compressive strength (psi) 

½ day 1 day 2 days 3 days 7 days 28 days 

REF 0.45 1150 2340 3090 3800 4270 4710 

REF 0.38 1765 3070 4410 4830 5400 5970 

ICC 0.45 1180 2320 3120 3870 4330 4900 

ICC 0.38 2120 3460 5140 5470 5870 6180 

ISLWC 0.45 1090 1510 2710 3730 3970 4160 

ISLWC 0.38 1000 1760 3790 4620 4920 5200 

SLWC 0.45 910 2120 3370 3770 4310 4640 

SLWC 0.38 1670 2560 3710 4710 5210 5850 

AWC 0.45 810 1560 2820 3320 3720 3980 

AWC 0.38 960 1670 2980 3780 4100 4370 
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Table B-2: Match-cured splitting tensile strength results for all concretes 

Concrete 
Splitting Tensile Strength (psi) 

½ day 1 day 2 days 3 days 7 days 28 days 

REF 0.45 160 260 350 390 350 430 

REF 0.38 230 340 390 400 460 510 

ICC 0.45 160 240 310 360 460 470 

ICC 0.38 220 310 360 380 480 530 

ISLWC 0.45 130 140 220 280 300 330 

ISLWC 0.38 120 210 240 320 340 340 

SLWC 0.45 160 280 270 360 370 460 

SLWC 0.38 160 230 340 340 430 480 

AWC 0.45 140 190 240 250 280 360 

AWC 0.38 160 230 230 260 310 380 
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Table B-3: Match-cured modulus of elasticity results for all concretes 

Concrete 
Modulus of Elasticity (ksi) 

½ day 1 day 2 days 3 days 7 days 28 days 

REF 0.45 2200 3300 3450 3900 4000 4050 

REF 0.38 2600 3450 4150 4350 4500 4550 

ICC 0.45 2050 2950 3300 3700 4100 3950 

ICC 0.38 2250 3300 4050 4350 4400 4500 

ISLWC 0.45 1450 1900 2450 2400 2550 2750 

ISLWC 0.38 1600 1850 2400 2800 2950 2950 

SLWC 0.45 1650 2450 2700 2850 3450 3550 

SLWC 0.38 1650 2400 3050 3300 3650 4000 

AWC 0.45 1400 1700 2400 2350 2500 2650 

AWC 0.38 1300 1750 2900 2450 3100 2950 

 

 


